

Sveučilište u Rijeci

Fakultet informatike i digitalnih tehnologija

Projektna dokumentacija

Algoritam rastavljanja slogova za Njemačko

jezično područje

Antonio Janach

Rijeka, siječanj 2023.

1

Sadržaj

1. Uvod .. 1

2. Algoritam ... 2

2.1. Karakteristike algoritma .. 2

2.2. Dizajn algoritma .. 3

3. Lingvistička pravila za njemački jezik .. 4

3.1. Pretprocesiranje ... 4

3.2. Abeceda, samoglasnici i suglasnici njemačkog jezika .. 5

3.3. Razrada algoritma na temelju lingvističkih pravila ... 5

3.3.1. Rastavljanje složenica.. 5

3.3.2. Odvojiti prefikse .. 6

3.3.3. Uzorci za rastavljanje .. 6

3.3.4. Raspis pravila za rastavljanje st, tz, i pf u sredini riječi 6

3.3.5. Iznimke .. 7

4. Programski kôd algoritma ... 8

4.1. Korišteni moduli .. 8

4.1.1. Modul re – regularni izrazi .. 8

4.1.2. Modul string .. 9

4.1.3. Modul compound-split .. 9

4.2. Opis glavnih dijelova algoritma .. 9

4.2.1. Globalne liste i globalne varijable ... 9

4.2.2. Funkcija syllabels_rules_execeptions.. 10

4.2.3. Funkcija sentence_in_vc.. 14

4.2.4. Funkcija syllables_rules .. 15

5. Osnovne upute za korištenje algoritma ... 19

2

6. Izrada web aplikacije i korisničkog sučelja ... 21

6.1. Osnovne upute za korištenje web sučelja .. 21

7. Testiranje algoritma ... 25

7.1. Skup testnih riječi .. 25

7.2. Programska skripta za računanje mjere točnosti ... 26

8. Rezultati i analiza uspješnosti programske skripte .. 30

Zaključak ... 32

Popis slika .. 33

Popis kôdova ... 34

Popis naredba ... 35

Literatura ... 36

Prilog: programski kod .. 37

1

1. Uvod

U ovoj projektnoj dokumentaciji bit će objašnjen i prikazan proces izrade algoritma koji

omogućava rastavljanje riječi na slogove, a odnosi se na njemačko jezično područje.

Odnosno, bit će dokumentirano specifično tacitno i eksplicitno lingvističko znanje te

njegova pretvorba i formalizacija za potrebe kreiranja algoritma silabifikacije.

Konačan cilj projekta je stvaranje algoritma i aplikacije koji bilo koju riječ na njemačkom

jeziku zna rastaviti na slogove. Točnije, za bilo koji tekst na ulazu, generira isti taj tekst na

izlazu, ali u obliku rastavljenom na slogove dodajući znak razmaka između susjednih

slogova.

Primjer za hrvatski tekst na ulazu:

„Analiza slogova kao osnovnih elemenata jezika važna je za različite postupke u domeni

računalne analize prirodnoga jezika i govornih tehnologija.“

Rezultat na izlazu:

„A na li za slo go va ka o os nov nih e le me na ta je zi ka va žna je za ra zli či te po stup ke

u do me ni ra ču nal ne a na li ze pri ro dno ga je zi ka i go vor nih teh no lo gi ja.“

Na temelju prikupljenih eksplicitnih i tacitnih znanja koje su prikupili, definirali i zapisali

lingvisti za njemački jezik, cilj je formalno zapisati ta ista pravila koristeći programski jezik

Python.

Na osnovu zapisanih pravila potrebno je kreirati algoritam za rastavljanje riječi na slogove.

Postupak rastavljanja na slogove nije uvijek trivijalan ni jednoznačan. Zbog toga je potrebno

poštovati pravila njemačkog jezika.

2

2. Algoritam

U ovome poglavlju bit će objašnjeno što je to algoritam. Algoritam je skup konačnih pravila

ili uputa koje treba slijediti u izračunima ili drugim operacijama rješavanja problema, ili pak

postupak za rješavanje matematičkog problema u konačnom broju koraka koji često

uključuje rekurzivne operacije.

Prema tome algoritam se odnosi na niz konačnih koraka za rješavanje određenog problema.

Slika 1: algoritam prikazan na slikovni način

Svaki puta kada koristimo telefon, računalo ili kalkulator primjenjujemo algoritme. Slično

tome, algoritmi pomažu obaviti zadatak u programiranju kako bi se dobio očekivani rezultat.

2.1. Karakteristike algoritma

Da bi neke instrukcije bile algoritam, algoritam mora imati sljedeće karakteristike:

a) Jasan i nedvosmislen: algoritam bi trebao biti jasan i nedvosmislen. Svaki njegov

korak treba biti jasan u svim aspektima i mora voditi samo jednom značenju.

b) Dobro definirani ulazi: ako algoritam kaže da treba uzeti ulaze, to bi trebali biti

dobro definirani ulazi. Može, ali i ne mora uzeti unos.

c) Dobro definirani izlazi: algoritam mora jasno definirati koji će se izlazi dati i on

također treba biti dobro definiran. Treba provesti najmanje 1 izlaz.

d) Konačnost: algoritam mora biti konačan, tj. trebao bi završiti nakon konačnog

vremena.

3

e) Izvedivo: algoritam mora biti jednostavan, generički i praktičan, takav da se može

izvršiti s raspoloživim resursima. Ne sadržavati neku tehnologiju budućnosti ili nešto

slično.

f) Neovisan o jeziku: dizajnirani algoritam mora biti neovisan o jeziku, tj. to moraju

biti jednostavne instrukcije koje se mogu implementirati na bilo kojem jeziku, a ipak

će izlaz biti isti, kao što se očekuje.

Slika 2: slikovni prikaz karakteristika algoritma

2.2. Dizajn algoritma

Za pisanje algoritma potrebne su sljedeće stvari kao preduvjet:

1. problem koji se algoritmom želi riješiti, tj. jasna definicija problema

2. prilikom rješavanja problema moraju se uzeti u obzir ograničenja problema

3. unos koji treba poduzeti za rješavanje problema

4. rezultat koji se može očekivati kada se problem želi riješiti

5. rješenje problem je unutar zadanih ograničenja

Zatim se pomoću gornjih parametara piše algoritam tako da rješava problem.

4

3. Lingvistička pravila za njemački jezik

U nastavku bit će prikazana lingvistička pravila koja formalno zapisuju postupak slogovanja.

3.1. Pretprocesiranje

Slova pojedine abecede prirodnog jezika mogu prouzročiti probleme u radu sa znakovnim

nizovima zbog načina kodiranja (npr. simboli č, ž, š, đ, ź, ł, ś, ń i slični). Takvi simboli mogu

se zamijeniti jednoznačnim simbolima koji su jednostavniji za kodiranje. Ovaj problem je

riješen tako da je korišten „Visual Studio Code“ kao radno okruženje.

Zatim je potrebno analizirati abecedu koja se koristi u njemačkom jezičnom području te

isprobati učitavanje tekstualne datoteke u kojoj se nalaze takvi specifični znakovi. Također,

potrebno je omogućiti da se svaka riječ iz rečenice promatra zasebno, neovisno o razmacima

i različitim interpunkcijskim znakovima koji se u rečenici mogu nalaziti. Neki od

interpunkcijskih znakova su: !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~.

Također, promatranje svake riječi potrebno je omogućiti formalizmom samoglasnika i

suglasnika. Odnosno, svaku riječ na ulazu je potrebno promatrati kao niz samoglasnik (V) i

suglasnika (C). Kada riječi promatramo kao nizove samoglasnika i suglasnika (a ne kao

originalne riječi s pripadnim morfemima, tj. slovima) tada sukladno definiranim

lingvističkim pravilima možemo pronalaziti uzorke koji se u riječi javljaju. Na temelju njih

rastaviti riječi na slogove temeljem danih pravila koja se spominju kasnije u ovom poglavlju.

5

3.2. Abeceda, samoglasnici i suglasnici njemačkog jezika

Abeceda njemačkog jezika:

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, Ä, Ö, Ü, ß

Samoglasnici i suglasnici njemačkog jezika:

SAMOGLASNICI – V – VOWELS:

Vokali (V): a, e, i, o, u, ä, ö, ü, ei, ai, ey, ay, eu, äu, ie, au; aa, ee, oo

SUGLASNICI – C – CONSONANTS:

Konsonanti (C): b c d f g h j k l m n p q r s t v w x y z, ß, sch, ch, ck, qu, ph

Tablica 1: samoglasnici i suglasnici njemačkog jezika

3.3. Razrada algoritma na temelju lingvističkih pravila

Riječi, rečenice ili tekst koji je dan na ulazu, na izlazu mora biti zapisan u obliku slogova.

Znakom razmaka obilježavamo granice između slogova.

3.3.1. Rastavljanje složenica

Najprije je potrebno odvojiti jednokorijenske riječi u složenicama koristeći Python

biblioteku compound-split.

Slika 3: primjer rastavljanja složenice u jednokorijenske riječi

https://en.wikipedia.org/wiki/%C3%84
https://en.wikipedia.org/wiki/%C3%84
https://en.wikipedia.org/wiki/%C3%96
https://en.wikipedia.org/wiki/%C3%96
https://en.wikipedia.org/wiki/%C3%96
https://en.wikipedia.org/wiki/%C3%9C
https://en.wikipedia.org/wiki/%C3%9C
https://en.wikipedia.org/wiki/%C3%9F

6

3.3.2. Odvojiti prefikse

Najprije, prefiks u gramatici nalazi se ispred korijena neke riječi. Dodavanje na početak

jedne riječi, nju mijenja u drugu riječ, često suprotnog značenja. Na primjer, kada je prefiks

ne dodan na riječ sretan, stvara riječ nesretan.

Stoga, za njemačko jezično područje potrebno je odvojiti prefikse koji završavaju sljedećim

konsonantima:

an, ab, auf, aus, dis, ein, fehl, her, hin, haupt, in, dar, durch, , los, mit, nach, von, vor,
weg, um, un, ur, ent, er, ver, zer, miss, miß, niss, niß, ex, non, super, trans, kon, hoch,
stink, stock, tief, tod, erz

Konsonanti koji se nalaze u donjem okviru su dvosložni i oni će se rastaviti u sljedećem

koraku:

unter, über, hinter, wider, wieder, weiter, zurück, zurecht, zusammen, hyper, inter

3.3.3. Uzorci za rastavljanje

U sljedećoj tablici su prikazani uzorci za rastavljanje riječi. Za lakšu interpretaciju

rastavljanje slogova prikazano je crticom „-“.

VCCV VC-CV

VCCCV VCC-CV

VCV V-CV

Tablica 2: prikaz uzoraka za rastavljanje riječi na slogove

Treće pravilo koje je navedeno u tablici pokriva pravilo da intervokalni h pripada sljedećem

slogu, upravo zbog intervokalnog C koji ide u sljedeći slog.

3.3.4. Raspis pravila za rastavljanje st, tz, i pf u sredini riječi

U sljedećoj tablici su prikazana pravila za rastavljanje riječi kad se st, tz i pf nalaze u sredini

riječi. Za lakšu interpretaciju rastavljanje slogova prikazano je crticom „-“.

https://en.wikipedia.org/wiki/%C3%9F
https://en.wikipedia.org/wiki/%C3%9F
https://en.wikipedia.org/wiki/%C3%9F

7

VstV Vs-tV

VCstV VCs-tV

VstCV VS-tCV

VxtCV Vx-tCV

VtzV Vt-zV

VCtzV VCt-zV

VtzCV Vtz-CV

VpfV Vp-fV

VCpfV VCp-fV

VpfCV Vpf-CV

Tablica 3: prikaz pravila za rastavljanje riječi kad se st, tz i pf nalaze u sredini riječi

3.3.5. Iznimke

U sljedećoj tablici su prikazana pravila za rastavljanje riječi kad se nalazi iznimka.

1. iznimka

Knie se rastavlja kao: Kni-e ako ispred njega stoje: die, der, ili ako prethodna riječ završi
na -e ili -er, ali ne rastavlja se ako ispred riječi koja završava na -e stoji das, s time da ispred
das mora biti jedna ili više riječi koje završavaju na -e

2. iznimka

tsch vrijedi kao jedan C kad je na početku riječi, tj. u poziciji tschV = CV i u poziciji na kraju
riječi, tj. Vtsch = VC

kad se nađe VtschCV, rastavlja se: Vtsch-CV

kad se nađe VtschV, rastavlja se: Vt-schV

3. iznimka

Ako se u rečenici nađu dva samoglasnika koji se ne nalaze u popisu vokala, tada oni
trebaju biti razdvojeni. Npr. za riječ poetisch i kad se nađu samoglasnici oe, oni trebaju
biti rastavljeni u obliku o-e, u konačnici po-e -tisch. Isto vrijedi i s riječi Nationen.

Tablica 4: tablica prikazuje pravila za rastavljanje riječi kad se nalazi iznimka

8

4. Programski kôd algoritma

U nastavku će biti opisan programski kôd algoritma koji je napisan u programskom jeziku

Python. Također, bit će nabrojani i opisani moduli ili biblioteke koje su korištene.

4.1. Korišteni moduli

Moduli koji su korišteni za razvoj algoritma su:

• re

• string

• compound-split

import re, string

from compound_split import doc_split

Kôd 1: prikaz uključenih modula

Detaljan opis modula nalazi se u nastavku.

4.1.1. Modul re – regularni izrazi

Modul re (engl. regular expression) je ugrađena Python biblioteka koja omogućava podršku

za regularne izraze. Regularni izrazi su koristan alat za podudaranje teksta baziranog na

definiranom uzorku. Može otkriti prisutnost ili odsutnost teksta tako što ga povezuje s

određenim uzorkom, a također može podijeliti uzorak u jedan ili više pod uzoraka. Njegova

primarna funkcija je ponuditi pretraživanje, gdje uzima regularni izraz i niz.

Regularni izrazi u Pythonu mogu se koristiti za rudarenje (pretraživanje) ili za validaciju

podataka.

Regularni izrazi prilikom kreiranja algoritma su korišteni kako bi se u tekstu kojem su slova

zamijenjena u obliku samoglasnika (V) i suglasnika (C) pronašli uzorak koji se odnosi na

pravilo rastavljanja. Kad je taj uzorak pronađen tada je primijenjeno pravilo rastavljanja te

riječi u zadanom tekstu.

9

4.1.2. Modul string

Modul string je ugrađena Python biblioteka. Pruža mogućnosti zamjene složenih varijabli i

oblikovanja vrijednosti putem format() metode. Omogućuje stvaranje i prilagodbu vlastitog

ponašanja oblikovanja niza koristeći istu implementaciju kao ugrađena funkcija format().

Modul string je korišten pri razvoju algoritma najviše zbog funkcije string.punctation.

Funkcija string.punctation u sebi sadrži sve interpunkcijske znakove, tako da kad algoritam

dobije rečenicu ili tekst kao input može ignorirati sve interpunkcijske znakove i posvetiti se

riječima.

4.1.3. Modul compound-split

Modul compound-split je Python modul za razdvajanje njemačkih složenica. Na primjer,

njemačka složenica „autobahnanschlussstelle“ koja treba biti rastavljena na „auto bahn

anschluss stelle“.

Metoda izračunava vjerojatnost pojavljivanja n-grama na početku, kraju i u sredini riječi i

identificira najvjerojatnije mjesto za razdvajanje.

Autor se referencira na to da metoda postiže ~95% točnosti i da je model treniran na milion

njemačkih imenica s Wikipedije.

Upute za instalaciju modula compound-split nalazi se u nastavku:

python -m venv env --prompt algorithm

pip install compound-split

Naredba 1: postavljanje virtualne okoline i instalacija modula compound-split

4.2. Opis glavnih dijelova algoritma

Algoritam se sastoji od globalnih varijabli, globalnih lista i triju funkcija. Detaljan opis uloga

funkcije i korištenja globalnih varijabli bit će opisan u ovome dijelu poglavlja.

4.2.1. Globalne liste i globalne varijable

Globalne varijable su one koje nisu definirane unutar funkcije i imaju globalni opseg, dok

su lokalne varijable one koje su definirane unutar funkcije i njihov je opseg ograničen samo

na tu funkciju. Drugim riječima, možemo reći da su lokalne varijable dostupne samo unutar

10

funkcije u kojoj su inicijaliziran, dok su globalne varijable dostupne u cijelom programu

unutar svake funkcije. Isto vrijedi i za globalne liste.

Algoritam se sastoji od četiri globalne liste:

1. vovels – lista koja sadrži popis samoglasnika

2. consonants – lista koja sadrži popis suglasnika

3. prefixes – lista koja sadrži popis prefiksa

4. splitting – lista koja sadrži popis uzoraka

vowels = ["a", "e", "i", "o", "u", "ä", "ö", "ü", "ei", "ai", "ey", "ay",

"eu", "äu", "ie", "au", "aa", "ee", "oo"]

consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p",

"q", "r", "s", "t", "v", "w", "x", "y", "z", "ß", "sch", "ch", "ck", "qu",

"ph"]

prefixes = ["an", "ab", "auf", "aus", "dis", "ein", "fehl", "her", "hin",

"haupt", "in", "dar", "durch", "los", "mit", "nach", "von", "vor", "weg",

"um", "un", "ur", "ent", "er", "ver", "zer", "miss", "miß", "niss", "niß",

"ex", "non", "super", "trans", "kon", "hoch", "stink", "stock", "tief",

"tod", "erz", "unter", "über", "hinter", "wider", "wieder", "weiter",

"zurück", "zurecht", "zusammen", "hyper", "inter"]

splitting = ["VCCV", "VCCCV", "VCV", "VV"]

sentence = "Mein name ist Antonio"

Kôd 2: globalne varijable i globalne liste

4.2.2. Funkcija syllabels_rules_execeptions

Funkcija syllables_rules_exeptions prima jedan parametar, a to je varijabla sentence. Ovom

funkcijom rješava se pravilo rastavljanja složenica, 1. iznimke i 2. iznimke. Gdje ujedno

funkcija vraća rečenicu u kojoj su pokrivena navedena pravila.

def syllables_rules_exceptions(input_sentence):

 global prefixes

 global vowels

 global consonants

11

 doc_split.MIDDLE_DOT = " "

 sentence_doc_split = doc_split.doc_split(input_sentence)

 sentence_exceptions_knie = sentence_doc_split.split(" ")

 regex_list_of_list = []

 for word in sentence_exceptions_knie:

 regex = re.findall(r'(?i)knie.*', word)

 if not regex:

 regex_list_of_list.append("X")

 else:

 regex_list_of_list.append(regex)

 regex_list = [val for sublist in regex_list_of_list for val in

sublist]

 sentence_checksum = sentence_exceptions_knie

 if len(regex_list) == len(sentence_checksum):

 index = 0

 while index < len(sentence_checksum):

 if regex_list[index].lower() ==

sentence_exceptions_knie[index].lower():

 if index == 0 and sentence_exceptions_knie[index].lower() ==

"knie":

 sentence_exceptions_knie[index] =

sentence_exceptions_knie[index]

 elif sentence_exceptions_knie[index - 1][-1:] == "e" and

sentence_exceptions_knie[index - 2] == "das" and

sentence_exceptions_knie[index - 3][-1:] == "e":

 sentence_exceptions_knie[index] ==

sentence_exceptions_knie[index]

 elif sentence_exceptions_knie[index - 1].lower() == "die" or

sentence_exceptions_knie[index - 1].lower() == "der" or

sentence_exceptions_knie[index - 1][-1:].lower() == "e":

 letter_index =

sentence_exceptions_knie[index].lower().find("knie")

 word = sentence_exceptions_knie[index]

 sentence_exceptions_knie[index] = word[:letter_index +

3] + " " + word[letter_index + 3:]

 index += 1

 sentence_knie = ' '.join(sentence_exceptions_knie)

 sentence_prefixes = sentence_knie.split(" ")

 for prefix in prefixes:

 prefix_length = len(prefix)

 for word in sentence_prefixes:

 if word[:prefix_length] == prefix:

 index = sentence_prefixes.index(word)

 sentence_prefixes[index] = word[:prefix_length] + " " +

word[prefix_length:]

12

 sentence_split_prefixes = ' '.join(sentence_prefixes)

 sentence_vc = sentence_split_prefixes.split(" ")

 regex_list_of_list = []

 for word_vc in sentence_vc:

 regex = re.findall(r'.*tsch.*', word_vc)

 if not regex:

 regex_list_of_list.append("X")

 else:

 regex_list_of_list.append(regex)

 regex_list = [val for sublist in regex_list_of_list for val in sublist]

 if len(regex_list) == len(sentence_vc):

 index = 0

 while index < len(sentence_vc):

 if regex_list[index].lower() == sentence_vc[index].lower():

 sentence_length_01 = len(sentence_vc[index]) - 1

 sentence_length_02 = len(sentence_vc[index])

 tsch_length = len("tsch")

 letter_index = sentence_vc[index].find("tsch")

 if letter_index == 0:

 word = sentence_vc[index]

 sentence_vc[index] = "C" + word[tsch_length:]

 if letter_index == sentence_length_01 - tsch_length or

letter_index == sentence_length_02 - tsch_length:

 word = sentence_vc[index]

 sentence_vc[index] = word[:letter_index] + "C"

 index += 1

 sentence_join = ' '.join(sentence_vc)

 sentence_letters = list(sentence_join)

 counter = 0

 for letter in sentence_letters:

 for sign in consonants:

 if letter == sign.upper() or letter == sign.lower() and letter

!= string.punctuation:

 sentence_letters[counter] = "C"

 for sign in vowels:

 if letter == sign.upper() or letter == sign.lower() and letter

!= string.punctuation:

 sentence_letters[counter] = "V"

 counter += 1

 sentence_in_vc = ''.join(sentence_letters)

13

 sentence_vc = sentence_in_vc.split(" ")

 sentence = sentence_split_prefixes.split(" ")

 regex_list_of_list = []

 for word_vc in sentence:

 regex = re.findall(r'.*tsch.*', word_vc)

 if not regex:

 regex_list_of_list.append("X")

 else:

 regex_list_of_list.append(regex)

 regex_list = [val for sublist in regex_list_of_list for val in sublist]

 if len(regex_list) == len(sentence):

 index = 0

 while index < len(sentence):

 if regex_list[index].lower() == sentence[index].lower():

 sentence_length_01 = len(sentence[index]) - 1

 sentence_length_02 = len(sentence[index])

 tsch_length = len("tsch")

 letter_index = sentence[index].find("tsch")

 if letter_index != 0 and letter_index != sentence_length_01

- tsch_length and letter_index != sentence_length_02 - tsch_length:

 word = sentence[index]

 if sentence_vc[index][letter_index - 1] == "V" and

sentence_vc[index][letter_index + tsch_length] == "C" and

sentence_vc[index][letter_index + tsch_length + 1] == "V":

 sentence[index] = word[:letter_index + 4] + " " +

word[letter_index + 4:]

 if sentence_vc[index][letter_index - 1] == "V" and

sentence_vc[index][letter_index + tsch_length] == "V":

 sentence[index] = word[:letter_index + 1] + " " +

word[letter_index + 1:]

 index += 1

 sentence_tsch = ' '.join(sentence)

 return sentence_tsch

Kôd 3: funkcija slyllabels_rules_exceptions

14

4.2.3. Funkcija sentence_in_vc

Funkcija sentence_in_vc prima jedan parametar, a to je varijable sentence. Ova funkcija

danu rečenicu pretvara u tekst kojem su slova zamijenjena u obliku samoglasnika (V) i

suglasnika (C). Gdje funkcija ujedno vraća rečenicu u navedenom obliku. Na primjer,

rečenica „Mein name ist Antonio“ je pretvorena u sljedeće „CVVC CVCV VCC

VCCVCVV“.

def sentence_in_vc(input_sentence):

 global vowels

 global consonants

 sentence_letters = list(input_sentence)

 sentence = input_sentence.split(" ")

 regex_list_of_list = []

 for word_vc in sentence:

 regex = re.findall(r'.*tsch.*', word_vc)

 if not regex:

 regex_list_of_list.append("X")

 else:

 regex_list_of_list.append(regex)

 regex_list = [val for sublist in regex_list_of_list for val in sublist]

 if len(regex_list) == len(sentence):

 index = 0

 while index < len(sentence):

 if regex_list[index].lower() == sentence[index].lower():

 sentence_length_01 = len(sentence[index]) - 1

 sentence_length_02 = len(sentence[index])

 tsch_length = len("tsch")

 letter_index = sentence[index].find("tsch")

 if letter_index == 0:

 word = sentence[index]

 sentence[index] = "C" + word[tsch_length:]

 if letter_index == sentence_length_01 - tsch_length or

letter_index == sentence_length_02 - tsch_length:

 word = sentence[index]

 sentence[index] = word[:letter_index] + "C"

 index += 1

 sentence_join = ' '.join(sentence)

 sentence_letters = list(sentence_join)

 counter = 0

15

 for letter in sentence_letters:

 for sign in consonants:

 if letter == sign.upper() or letter == sign.lower() and letter

!= string.punctuation:

 sentence_letters[counter] = "C"

 for sign in vowels:

 if letter == sign.upper() or letter == sign.lower() and letter

!= string.punctuation:

 sentence_letters[counter] = "V"

 counter += 1

 sentence_vc = ''.join(sentence_letters)

 return sentence_vc

Kôd 4: funkcija sentence_in_vc

4.2.4. Funkcija syllables_rules

Funkcija syllabels_rules prima jedan parametar, a to je varijable sentence. ovom funkcijom

rješava se 3. pravilo i 3. iznimku. Gdje ujedno funkcija vraća rečenicu u kojoj su pokrivena

navedena pravila.

def syllables_rules(input_sentence):

 global splitting

 global vowels

 sentence = input_sentence.split(" ")

 sentence_vc = sentence_in_vc(input_sentence).split(" ")

 for split in splitting:

 if split == "VCCV":

 regex_list_of_list = []

 for word_vc in sentence_vc:

 regex = re.findall(r'.*{}.*'.format(split), word_vc)

 if not regex:

 regex_list_of_list.append("X")

 else:

 regex_list_of_list.append(regex)

 regex_list = [val for sublist in regex_list_of_list for val in

sublist]

 if len(regex_list) == len(sentence_vc):

 index = 0

 while index < len(sentence_vc):

 if regex_list[index] == sentence_vc[index]:

 letter_index = sentence_vc[index].find(split)

 word = sentence[index]

16

 sentence[index] = word[:letter_index + 2] + " " +

word[letter_index + 2:]

 index += 1

 sentence_splitting = ' '.join(sentence)

 sentence_splitting_vc = ' '.join(sentence)

 sentence = sentence_splitting.split(" ")

 sentence_vc = sentence_in_vc(sentence_splitting_vc).split(" ")

 for split in splitting:

 if split == "VCCCV":

 regex_list_of_list = []

 for word_vc in sentence_vc:

 regex = re.findall(r'.*{}.*'.format(split), word_vc)

 if not regex:

 regex_list_of_list.append("X")

 else:

 regex_list_of_list.append(regex)

 regex_list = [val for sublist in regex_list_of_list for val in

sublist]

 if len(regex_list) == len(sentence_vc):

 index = 0

 while index < len(sentence_vc):

 if regex_list[index] == sentence_vc[index]:

 difference_st = sentence[index].find("st") -

sentence_vc[index].find("VCCCV")

 difference_xt = sentence[index].find("xt") -

sentence_vc[index].find("VCCCV")

 if difference_st == 1 or difference_xt == 1:

 letter_index = sentence_vc[index].find(split)

 word = sentence[index]

 sentence[index] = word[:letter_index + 2] + " "

+ word[letter_index + 2:]

 else:

 letter_index = sentence_vc[index].find(split)

 word = sentence[index]

 sentence[index] = word[:letter_index + 3] + " "

+ word[letter_index + 3:]

 index += 1

 sentence_splitting = ' '.join(sentence)

 sentence_splitting_vc = ' '.join(sentence)

 sentence = sentence_splitting.split(" ")

17

 sentence_vc = sentence_in_vc(sentence_splitting_vc).split(" ")

 for split in splitting:

 if split == "VCV":

 regex_list_of_list = []

 for word_vc in sentence_vc:

 regex = re.findall(r'.*{}.*'.format(split), word_vc)

 if not regex:

 regex_list_of_list.append("X")

 else:

 regex_list_of_list.append(regex)

 regex_list = [val for sublist in regex_list_of_list for val in

sublist]

 if len(regex_list) == len(sentence_vc):

 index = 0

 while index < len(sentence_vc):

 if regex_list[index] == sentence_vc[index]:

 letter_index = sentence_vc[index].find(split)

 word = sentence[index]

 sentence[index] = word[:letter_index + 1] + " " +

word[letter_index + 1:]

 index += 1

 sentence_splitting = ' '.join(sentence)

 sentence_splitting_vc = ' '.join(sentence)

 sentence = sentence_splitting.split(" ")

 sentence_vc = sentence_in_vc(sentence_splitting_vc).split(" ")

 for split in splitting:

 if split == "VV":

 regex_list_of_list = []

 for word_vc in sentence_vc:

 regex = re.findall(r'.*{}.*'.format(split), word_vc)

 if not regex:

 regex_list_of_list.append("X")

 else:

 regex_list_of_list.append(regex)

 regex_list = [val for sublist in regex_list_of_list for val in

sublist]

 index = 0

 if len(regex_list) == len(sentence_vc):

 index = 0

 while index < len(sentence_vc):

 if regex_list[index] == sentence_vc[index]:

 letter_index = sentence_vc[index].find(split)

18

 word = sentence[index]

 vowels_check = word[letter_index] +

word[letter_index + 1]

 if vowels_check.lower() not in vowels:

 sentence[index] = word[:letter_index + 1] + " "

+ word[letter_index + 1:]

 index += 1

 sentence_splitting = ' '.join(sentence

 return re.sub(' +', ' ', sentence_splitting)

Kôd 5: funkcija syllabels_rules

19

5. Osnovne upute za korištenje algoritma

U ovome poglavlju bit će prikazano kako koristiti algoritam. Algoritam je jednostavan za

korištenje, bitno je imati ulaznu rečenicu koja se želi rastaviti na slogove.

Na primjer, ako u algoritmu zadamo rečenicu „Mein name ist Antonio.“ tada tu rečenicu

pomoću varijable prosljeđujemo u funkciju.

sentence = "Mein name ist Antonio."

syllables_rules(syllables_rules_exceptions(sentence))

Kôd 6: primjer prosljeđivanja varijable koja je tipa string u funkciju

Kao što vidimo iz primjera koristi se ugnježđivanje funkcije, gdje u funkciju syllables_rules

prosljeđujemo izlaz funkcije syllables_rules_exceptions, u koju opet prosljeđujemo danu

rečenicu.

Algoritam je implementiran na ovaj način jer temeljem testiranja ovako dobiva najbolje

rezultate, odnosno ne događaju se anomalije i sudaranja pravila jedno s drugim prilikom

pokretanja programa.

Međutim, jednim prolazom algoritma kroz riječ ili rečenicu ne razdvaja sve slogove. Stoga,

kako bi algoritam u potpunosti rastavio sve slogove u riječi ili rečenici potrebno je pokrenuti

funkcije u tri kruga, odnosno tri puta. Pri kreiranju algoritma zaključak je da pokretanje

funkcije u tri kruga rastavlja sve riječi koje u prethodna dva kruga nisu obuhvaćene.

sentence = "Mein name ist Antonio."

prvi_krug = syllables_rules(syllables_rules_exceptions(sentence))

drugi_krug = syllables_rules(syllables_rules_exceptions(prvi_krug))

treci_krug = syllables_rules(syllables_rules_exceptions(drugi_krug))

print(treci_krug)

Kôd 7: primjer pokretanja funkcija u tri kruga

20

Kao što možemo vidjeti u prethodnom primjeru nad danom rečenicom pokrenuli smo

funkciju syllables_rules tri puta i spremili ju u varijablu, te smo tu varijablu kao rezultat

pokrenute funkcije proslijedili ponovno toj istoj funkciji syllables_rules. Na kraju smo

varijablu treci_krug ispisali na konzolu kao konačan rezultat rastavljene riječi ili rečenice.

Slika 4: prikaz rastavljene rečenice

21

6. Izrada web aplikacije i korisničkog sučelja

Nakon što je algoritam kreiran, moguće je izraditi funkcionalnu web aplikaciju. Izrađeno je

programsko sučelje u kojem korisnik može odabrati jednu od dviju opcija.

1. Korisnik samostalno upisuje riječ ili rečenicu na ulazu preko standardnog ulaza

(tipkovnica), a program će mu odmah za uneseni tekst ispisati na zaslonu rastavljeni

tekst na slogove.

2. Korisnik odabire putanju na svojem računalu do tekstualne datoteke (.txt) u kojoj je

zapisan tekst kojeg želi očitati na ulazu, a rastavljeni tekst na slogove ispisuje na

ekran.

Web aplikacija izrađena je u Flask-u. Flask je Python web framework, namijenjen razvoju

web aplikacija. Po svojoj veličini smatra se micro-frameworkom, zbog čega je vrlo

popularan kao alat za učenje web programiranja u Pythonu. Naziva ga se i non-full-stack

frameworkom, za razliku od full-stack frameworka poput Djanga ili TurboGearsa. No, to ne

znači da Flak nije moćan poput navedenih platformi, jer je dizajniran sa svrhom da bude

lako proširivi uz pomoć tzv. Flask ekstenzija. Dakle, sam Flask nudi temelje za razvoj, a

brojne ekstenzije nude mogućnost da web aplikacija bude lako proširiva s onime što korisnik

zahtjeva (poput rada s web formama, autentifikacije, pristupa bazama podataka, prijavama i

sl.).

Za razvoj web aplikacije odabran je Flask jer izrada same web aplikacije nije zahtjevna,

odnosno zahtjeva samo jedan ulaz i jedan izlaz.

U ovome poglavlju Flask se neće spominjati u detalje već će biti prikazane snimke zaslona

kako je aplikacija implementirana i kako ju koristiti kao korisnik. A kôd web aplikacije može

se pronaći u zadnjem poglavlju „Prilog: programski kôd“ gdje se nalazi URL do GitHub

repozitorija.

6.1. Osnovne upute za korištenje web sučelja

Početna stranica web sučelja sastoji se od naslova, podnaslova i triju gumba. Korisnik na

odabir gumba odabire željenu opciju koju želi izvršiti nad tekstom. Tako na primjer klikom

22

na prvi gumb korisnik odabire opciju da će ručno (pomoću tipkovnice) unijeti tekst za

obradu, odnosno na rastavljanje na slogove.

Slika 5: prikaz početne stranice web sučelja

Kad korisnik pritisne na gumb „Input as a text.“ otvara mu se web stranica koja se sastoji

od:

a) naslova

b) forme za unos teksta

c) gumba za potvrdu i resetiranje rezultata

d) polja za prikaz rezultata

e) Gumb za vraćanje na početnu stranicu

Slika 6: prikaz korisničkog sučelja kad korisnik pritisne gumb „Input as a text.“

23

Kad korisnik pritisne na gumb „Input as a .txt file.“ otvara mu se web stranica koja se sastoji

od:

a) naslova

b) forme za unos dokumenta u .txt formatu

c) gumba za učitavanje dokumenta za obradu

d) gumba za resetiranje

e) polja za prikaz rezultata

f) gumb za vraćanje na početnu stranicu

Slika 7: prikaz korisničkog sučelja kad korisnik pritisne gumb „Input as a .txt file.“

Kad korisnik pritisne na gumb „Algorithm accuracy measure.“ otvara mu se web stranica

koja se sastoji od:

a) naslova

b) testnih riječi

c) verificiranih razdvojenih riječi

d) rezultata koji algoritam postiže pri razdvajanju testnih riječi

e) gumba za vraćanje na početnu stranicu

24

Slika 8: web stranica koja prikazuje mjeru točnosti algoritma

25

7. Testiranje algoritma

Načinjeni algoritam potrebno je testirati na pripremljenom skupu testnih riječi za njemački

jezik. Uspješnost algoritma izražena je numerički koristeći mjeru kojom se mjeri točnost

(engl accuracy). Točnost algoritma mjeri se na temelju uspješno rastavljenih riječi u skupu

svih riječi. Izračun je napravljen programskom skriptom koja to sama računa.

Također, kako bi preciznost uspješno rastavljenih riječi bila što točnija korištena je mjera za

djelomičnu točnost (npr. kada je dio riječi rastavljen dobro, a drugi dio nije i sl.)

7.1. Skup testnih riječi

U nastavku se nalazi popis testnih riječi koje su dane na testiranje i evaluaciju. Također, za

dane testne riječi, dani su primjeri i za točno rastavljene riječi kako bi se mogla napraviti

mjera točnosti.

Skup testnih riječi i verificiranih rastavljenih riječi u Pythonu, napravljene su dvije liste kako

bi se nad njima mogla izvršiti mjera točnosti.

Skup testnih riječi:

test_words = ["Diät", "Knie", "die knie", "der knie", "reise knie", "Auto",

"Seeufer", "Katze", "Tatze", "Pfütze", "putzen", "platzen", "Bürste",

"Kiste", "Hamster", "Fenster", "hinstellen", "darstellen", "erstarren",

"plötzlich", "Postauto", "Kratzbaum", "boxen", "heben", "rodeln",

"Schifffahrt", "Mussspiel", "wichtigsten", "besuchen", "gewinnen",

"vergessen", "abangeln", "Kreuzotter", "poetisch", "Nationen", "aber",

"über", "Kreuzklemme", "Foxtrott", "witzlos", "witzig", "wegschmeißen",

"Bettüberzug", "wirtschaft", "Beziehungsknatsch", "Gletscher",

"Wurstscheibe", "Borretschgewächs", "Bodden", "Handball", "Neubau",

"Stalltür", "Autobahnanschlussstelle", "Laufschuhe", "Baustelle",

"Lebkuchen", "Himbeere", "Klassenzimmer", "Hubbleteleskop", "Botschaft",

"Schokoladenfabrik", "Hühnersuppe", "Schweinebraten", "Halsschmerzen",

"Weltanschauung", "Weltschmerz", "Weihnachtsbaum", "Kugelschreiber",

"Bohnensalat", "Freundschaftsbezeigung", "Weihnachtsmannfigur",

"Glasflächenreinigung"]

Kôd 8: prikaz skupa testnih riječi

26

Skup testnih riječi koje su ispravno rastavljene:

verify_words = ["Di ät", "Knie", "die kni e", "der kni e", "rei se kni e",

"Au to", "See ufer", "Kat ze", "Tat ze", "Pfüt ze", "put zen", "plat zen",

"Bürs te", "Kis te", "Hams ter", "Fens ter", "hin stel len", "dar stel len",

"er star ren", "plötz lich", "Post au to", "Kratz baum", "bo xen", "he ben",

"ro deln", "Schiff fahrt", "Muss spiel", "wich tigs ten", "be su chen", "ge

win nen", "ver ges sen", "ab an geln", "Kreuz ot ter", "po e tisch", "Na ti

o nen", "a ber", "ü ber", "Kreuz klem me", "Fox trott", "witz los ", "wit

zig", "weg schmei ßen", "Bett ü ber zug", "wirt schaft", "Be zieh ungs

knatsch", "Glet scher", "Wurst schei be", "Bor retsch ge wächs", "Bod den",

"Hand ball", "Neu bau", "Stall tür", "Au to bahn an schluss stel le", "Lauf

schu he", "Bau stel le", "Leb ku chen", "Him bee re", "Klas sen zim mer",

"Hub ble te le skop", "Bot schaft", "Scho ko la den fa brik", "Hüh ner sup

pe", "Schwei ne bra ten", "Hals schmer zen", "Welt an schau ung", "Welt

schmerz", "Weih nachts baum", "Ku gel schrei ber", "Boh nen sa lat", "Freund

schafts be zei gung", "Weih nachts mann fi gur", "Glas fläch en rei ni

gung"]

Kôd 9: prikaz testnih riječi onako kako trebaju biti rastavljene

7.2. Programska skripta za računanje mjere točnosti

Za izradu programske skripte koja računa mjeru točnosti rastavljanja riječi na slogove

kreirana je nova Python datoteka imena test_accuracy.py unutar direktorija u kojem se nalazi

Python datoteka algoritma imena algorithm.py. Cilj koji se želi postići je da se u datoteku

imena test_accuracy.py uveze datoteka algorithm.py radi čitkosti kôda.

import algorithm

Kôd 10: prikaz kôda za uvoz datoteke imena algorithm.py u datoteku test_accuracy.py

Programska skripta računa mjeru točnosti točno rastavljenih riječi od ukupno riječi i mjeru

točnosti djelomično točno rastavljenih riječi. Mjera djelomično točno rastavljenih riječi

računa se prema točno rastavljenim dijelovima riječi od ukupno točno rastavljenih dijelova

riječi. Na primjer, ako dana riječ „hinstellen“ i treba biti rastavljena na način „hin stel len“,

a algoritam je riječ rastavio na „hin stell en“ tada se točnost mjeri prema točno rastavljenim

dijelovima riječi od ukupno točno rastavljenih dijelova riječi. Što je u ovom slučaju 1 točan

slog, a ostala 2 su netočna i to daje rezultat 1/3.

Moduli koji su korišteni za izradu programske skripte su prettytable i termcolor. Modul

prettytable je korišten za generiranje ASCII tablice, dok je modul termcolor korišten za

isticanje rezultata na terminal u boji.

27

Module je potrebno zasebno instalirati jer nisu dio standardne Python biblioteke. Instalacija

modula se izvršava na sljedeći način.

pip install prettytable

pip install termcolor

Naredba 2: instalacija zasebno korištenih modula

from prettytable import PrettyTable

from termcolor import colored

Kôd 11: moduli koji su korišteni za izradu programske skripte

Osim prethodno spomenutih skupa testnih riječi, riječi koje su ispravno rastavljene i opisa

korištenih modula, u nastavku se nalazi programska skripta koja obuhvaća navedeno.

import algorithm

from prettytable import PrettyTable

from termcolor import colored

test_words = ["Diät", "Knie", "die knie", "der knie", "reise knie", "Auto",

"Seeufer", "Katze", "Tatze", "Pfütze", "putzen", "platzen", "Bürste",

"Kiste", "Hamster", "Fenster", "hinstellen", "darstellen", "erstarren",

"plötzlich", "Postauto", "Kratzbaum", "boxen", "heben", "rodeln",

"Schifffahrt", "Mussspiel", "wichtigsten", "besuchen", "gewinnen",

"vergessen", "abangeln", "Kreuzotter", "poetisch", "Nationen", "aber",

"über", "Kreuzklemme", "Foxtrott", "witzlos", "witzig", "wegschmeißen",

"Bettüberzug", "wirtschaft", "Beziehungsknatsch", "Gletscher",

"Wurstscheibe", "Borretschgewächs", "Bodden", "Handball", "Neubau",

"Stalltür", "Autobahnanschlussstelle", "Laufschuhe", "Baustelle",

"Lebkuchen", "Himbeere", "Klassenzimmer", "Hubbleteleskop", "Botschaft",

"Schokoladenfabrik", "Hühnersuppe", "Schweinebraten", "Halsschmerzen",

"Weltanschauung", "Weltschmerz", "Weihnachtsbaum", "Kugelschreiber",

"Bohnensalat", "Freundschaftsbezeigung", "Weihnachtsmannfigur",

"Glasflächenreinigung"]

verify_words = ["Di ät", "Knie", "die kni e", "der kni e", "rei se kni e",

"Au to", "See ufer", "Kat ze", "Tat ze", "Pfüt ze", "put zen", "plat zen",

"Bürs te", "Kis te", "Hams ter", "Fens ter", "hin stel len", "dar stel len",

"er star ren", "plötz lich", "Post au to", "Kratz baum", "bo xen", "he ben",

"ro deln", "Schiff fahrt", "Muss spiel", "wich tigs ten", "be su chen", "ge

win nen", "ver ges sen", "ab an geln", "Kreuz ot ter", "po e tisch", "Na ti

o nen", "a ber", "ü ber", "Kreuz klem me", "Fox trott", "witz los ", "wit

zig", "weg schmei ßen", "Bett ü ber zug", "wirt schaft", "Be zieh ungs

knatsch", "Glet scher", "Wurst schei be", "Bor retsch ge wächs", "Bod den",

"Hand ball", "Neu bau", "Stall tür", "Au to bahn an schluss stel le", "Lauf

schu he", "Bau stel le", "Leb ku chen", "Him bee re", "Klas sen zim mer",

"Hub ble te le skop", Bot schaft", "Scho ko la den fa brik", "Hüh ner sup

pe", "Schwei ne bra ten", "Hals schmer zen", "Welt an schau ung", "Welt

28

schmerz", "Weih nachts baum", "Ku gel schrei ber", "Boh nen sa lat", "Freund

schafts be zei gung", "Weih nachts mann fi gur", "Glas fläch en rei ni

gung"]

correct_words = []

partial_correct_words = []

table = PrettyTable()

table.field_names = ['Test word', 'Verify word', 'Algorithm output',

'Partial correct word', 'Percent of partial word accuracy']

counter = 0

for word in test_words:

 prvi_krug =

algorithm.syllables_rules(algorithm.syllables_rules_exceptions(word))

 drugi_krug =

algorithm.syllables_rules(algorithm.syllables_rules_exceptions(prvi_krug))

 treci_krug =

algorithm.syllables_rules(algorithm.syllables_rules_exceptions(drugi_krug))

 algorithm_output = treci_krug

 if algorithm_output == verify_words[counter]:

 correct_words.append(1)

 partial_correct_words.append(1)

 table.add_row([word, verify_words[counter], algorithm_output, "yes -

all", format(1, ".2f")])

 else:

 correct_words.append(0)

 word_split = algorithm_output.split()

 verify_words_split = verify_words[counter].split()

 part_number = len(verify_words_split)

 part_correct = 0

 for part_vws in verify_words_split:

 for part_ws in word_split:

 if part_ws == part_vws:

 part_correct += 1

 partial_accuracy = part_correct / part_number

 partial_correct_words.append(partial_accuracy)

 table.add_row([word, verify_words[counter], algorithm_output, f"no -

{part_correct} of {part_number}", format(partial_accuracy, ".2f")])

 counter += 1

29

table.add_row([colored("---", "yellow"), colored("---", "yellow"),

colored("---", "yellow"), colored(f" correct:

{sum(partial_correct_words):.2f} of {len(partial_correct_words) -

sum(partial_correct_words):.2f}", "yellow"),

colored(format(sum(partial_correct_words) / len(partial_correct_words),

".2f"), "yellow")])

print(table)

print(f"Full measure of accuracy: {sum(correct_words) /

len(correct_words):.2f}\n"

 f"Correct words: {sum(correct_words)}\n"

 f"Uncorrect words: {len(correct_words) - sum(correct_words)}\n"

 f"Number of words: {len(correct_words)}\n")

print(f"Partial measure of accuracy: {sum(partial_correct_words) /

len(partial_correct_words):.2f}\n"

 f"Partial correct words: {sum(partial_correct_words):.2f}\n"

 f"Partial uncorrect words: {len(partial_correct_words) -

sum(partial_correct_words):.2f}\n"

 f"Number of words: {len(partial_correct_words)}\n")

Kôd 12: programska skripta za računanje mjere točnosti

30

8. Rezultati i analiza uspješnosti programske

skripte

Ovaj dio dokumentacije uključuje opise i interpretaciju dobivenih rezultata programske

skripte. Odnosi se na riječi koje je algoritam rastavio iz skupa riječi za testiranje.

Rezultat dobiven izračunom mjere točnosti potpuno rastavljenih riječi iznosi: 0.78. Odnosno

78% uspješnosti.

Measure of accuracy: 0.78

Correct words: 56

Uncorrect words: 16

Number of words: 72

Kôd 13: mjera točnosti potpuno rastavljenih riječi – izlaz iz terminala

Dok rezultat dobiven izračunom mjere točnosti djelomično rastavljenih riječi iznosi: 0.87.

Odnosno 87% uspješnosti što je za 9% više u odnosu na prethodni rezultat.

Partial measure of accuracy: 0.87

Partial correct words: 62.53

Partial uncorrect words: 9.47

Number of words: 72

Kôd 14: mjera točnosti djelomično rastavljenih riječi – izlaz iz terminala

Algoritam ne daje mjeru točnosti od 100% i teško da će se postići takva točnost upravo zbog

korištenog modula (compound-split) za rastavljanje složenica u njemačkom jezičnom

području. Postoji još jedan modul (german_compound_splitter) koji rastavlja složenice s

puno većom točnošću jer koristi njemački rječnik koji obuhvaća više riječi. Navedeni modul

nije implementiran jer zadatak nalaže korištenje compound-split modula.

Također, unutar algoritma implementirana su sva pravila koja su u 3. poglavlju navedena

(„Lingvistička pravila za njemački jezik“).

31

Slika 9: Tablični prikaz kako je algoritam rastavio riječi

32

Zaključak

U ovoj projektnoj dokumentaciji objašnjeno je što je to algoritam, koje su karakteristike i

kako dizajnirati dobar algoritam. Navedena su lingvistička pravila koja je stručna osoba,

odnosno lingvist za njemačko jezično područje dostavio. Opisan je programski kôd

algoritma i moduli koji su korišteni zajedno sa osnovnim uputama za korištenje algoritma.

Za kreiran algoritam, izrađena je web aplikacija i korisničko sučelje gdje korisnik može

odabrati željeni opciju za rastavljanje teksta. Unos teksta ručno pomoću tipkovnice ili unos

teksta korištenjem .txt datoteke. Web aplikacija sadrži i opciju koju korisnik može odabrati

kako bi dobio uvid u točnost samog algoritma na danom skupu za testiranje.

Za kraj je kreirana skripta za testiranje točnosti algoritma. Algoritam je testiran na skupu

riječi koje je lingvist dostavio, a u svrhu mjerenja točnosti algoritma. Skripta za testiranje

točnosti algoritma mjeri potpunu točnost i djelomičnu točnost. Bolji rezultat mjerenja

točnosti postiže se testiranjem djelomične točnosti, a rezultat je bolji za 9% u odnosu na

mjerenje potpune točnosti.

Prilikom izrade ovog algoritma može se zaključiti da se točnost od 100% teško postiže iako

su sva pravila implementirana u algoritam. Razlog tome je što modul compound-split ne

rastavlja dovoljno dobro njemačke složenice. Kako bi potencijalno riješili taj problem

potrebno je trenirati model na složenicama koje se nalaze u testnome skupu, koristiti

german_compound_splitter modul ili ručno napraviti iznimke.

33

Popis slika

Slika 1: algoritam prikazan na slikovni način ... 2

Slika 2: slikovni prikaz karakteristika algoritma ... 3

Slika 3: primjer rastavljanja složenice u jednokorijenske riječi .. 5

Slika 4: prikaz rastavljene rečenice ... 20

Slika 5: prikaz početne stranice web sučelja ... 22

Slika 6: prikaz korisničkog sučelja kad korisnik pritisne gumb „Input as a text.“ 22

Slika 7: prikaz korisničkog sučelja kad korisnik pritisne gumb „Input as a .txt file.“ 23

Slika 8: web stranica koja prikazuje mjeru točnosti algoritma .. 24

Slika 9: Tablični prikaz kako je algoritam rastavio riječi .. 31

https://uniri-my.sharepoint.com/personal/antonio_janach_student_uniri_hr/Documents/Faks/Diplomski/PZRZ/Projekt%20-%20final/antonio_janach_-_projektna_dokumentacija.docx#_Toc124112730

34

Popis kôdova

Kôd 1: prikaz uključenih modula .. 8

Kôd 2: globalne varijable i globalne liste .. 10

Kôd 3: funkcija slyllabels_rules_exceptions ... 13

Kôd 4: funkcija sentence_in_vc .. 15

Kôd 5: funkcija syllabels_rules ... 18

Kôd 6: primjer prosljeđivanja varijable koja je tipa string u funkciju................................. 19

Kôd 7: primjer pokretanja funkcija u tri kruga .. 19

Kôd 8: prikaz skupa testnih riječi .. 25

Kôd 9: prikaz testnih riječi onako kako trebaju biti rastavljene .. 26

Kôd 10: prikaz kôda za uvoz datoteke imena algorithm.py u datoteku test_accuracy.py ... 26

Kôd 12: moduli koji su korišteni za izradu programske skripte .. 27

Kôd 13: programska skripta za računanje mjere točnosti.. 29

Kôd 14: mjera točnosti potpuno rastavljenih riječi – izlaz iz terminala 30

Kôd 15: mjera točnosti djelomično rastavljenih riječi – izlaz iz terminala 30

35

Popis naredba

Naredba 1: postavljanje virtualne okoline i instalacija modula compound-split................... 9

Naredba 2: instalacija zasebno korištenih modula .. 27

36

Literatura

[1] W3SCHOOLS, Python Lists, https://www.w3schools.com/python/python_lists.asp,

siječanj 2023.

[2] W3SCHOOLS, Python – Global Variables,

https://www.w3schools.com/python/python_variables_global.asp, siječanj 2023.

[3] W3SCHOOLS, Python Functions,

https://www.w3schools.com/python/python_functions.asp, siječanj 2023.

[4] Python, re – Regial expression operations, https://docs.python.org/3/library/re.html,

siječanj 2023.

[5] Regex Pal, Regex tester, https://www.regexpal.com/, siječanj 2023.

[6] GeeksForGeeks, Creating Tables with PrettyTable Library – Python,

https://www.geeksforgeeks.org/creating-tables-with-prettytable-library-python/,

siječanj, 2023.

[7] Replit, How to Use Termcolor In Python, https://replit.com/talk/learn/How-to-Use-

Termcolor-In-Python/24684, sijačanj 2023.

[8] Csatlas, Python 3: Import Another Python File as a Module,

https://csatlas.com/python-import-file-module/, siječanj 2023.

[9] Wikipedia, Njemački standardni jezik,

https://hr.wikipedia.org/wiki/Njema%C4%8Dki_standardni_jezik, siječanj 2023.

[10] Wikipedia, German verbs, https://en.wikipedia.org/wiki/German_verbs, siječanj

2023.

[11] Intellecta, Njemačke složenice – nisu tako strašne!, https://www.intellecta.hr/jezicne-

zanimljivosti/njemacke-slozenice/, siječanj 2023.

[12] Silbentrennung, slična web aplikacija za rastavljanje na slogove,

https://www.silbentrennung24.de/, siječanj 2023.

[13] GitHub, JoelNiklaus CompoundSplit,

https://github.com/JoelNiklaus/CompoundSplit, siječanj 2023.

[14] GitHub, repodiac german_compounder_splitter,

https://github.com/repodiac/german_compound_splitter, siječanj 2023.

https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_variables_global.asp
https://www.w3schools.com/python/python_functions.asp
https://docs.python.org/3/library/re.html
https://www.regexpal.com/
https://www.geeksforgeeks.org/creating-tables-with-prettytable-library-python/
https://replit.com/talk/learn/How-to-Use-Termcolor-In-Python/24684
https://replit.com/talk/learn/How-to-Use-Termcolor-In-Python/24684
https://csatlas.com/python-import-file-module/
https://hr.wikipedia.org/wiki/Njema%C4%8Dki_standardni_jezik
https://en.wikipedia.org/wiki/German_verbs
https://www.intellecta.hr/jezicne-zanimljivosti/njemacke-slozenice/
https://www.intellecta.hr/jezicne-zanimljivosti/njemacke-slozenice/
https://www.silbentrennung24.de/
https://github.com/JoelNiklaus/CompoundSplit
https://github.com/repodiac/german_compound_splitter

37

Prilog: programski kod

URL na GitHub repozitorij:

 https://github.com/ajanach/word_syllables

https://github.com/ajanach/word_syllables

