Sveucdiliste u Rijeci

Fakultet informatike i digitalnih tehnologija

Projektna dokumentacija

Algoritam rastavljanja slogova za Njemacko

jezicéno podrucje

Antonio Janach

Rijeka, sijeCanj 2023.

Sadrzaj

2.

3.

UVOU .t b et b et b bt n e 1
AGOTTEAM ...ttt bbbt n s 2
2.1, Karakteristike algoritmaccoiuiiieiiieiiesece e 2
2.2, Dizajn algOritmacceeieeie et 3
Lingvisticka pravila za njemacki JeZiKccceiiieiiiiiiiiiiie e 4
3.1, PretPrOCESITANIE .. .cvieiiiieiieiete ettt bbbttt se et bbbt 4
3.2. Abeceda, samoglasnici i suglasnici njemackog jezikacccccoveriiiiniiiniiinenn 5
3.3. Razrada algoritma na temelju lingvistickih pravila............cccoooeiiiiiiiiiiice, 5
3.3.1. Rastavljanje SIOZENICA.........ccuiiiiieiiiiiie i 5
3.3.2. OUVOJith PrefiKSE ...iiviiiiieie ittt s 6
3.3.3. UzZOrCi 28 raStaVIJAN]E ...c.veveiiceiieeeee e 6
3.3.4. Raspis pravila za rastavljanje st, tz, i pfu sredini rijeCiccoovervrierivernene. 6
3.3.5. TZNIMKE ... 7
Programski KO algoritmaccceeiuiiiiiicie s 8
4.1, KoriSteni MOAUIT......cviiiiiiiiiie e 8
4.1.1. Modul re — regUIAIMNI IZIAZIccveviieieii e 8
4.1.2. MOTUI SEFING .. 9
4.1.3. Modul compound-SPHItccciiiiiiie e 9
4.2. Opis glavnih dijelova algoritmacccoeieiiiieiee e 9
4.2.1. Globalne liste i globalne varijable ..., 9
4.2.2. Funkcija syllabels_rules eXeceptions............ccecveivieevieiieeiie e 10
4.2.3. FUNKCIJa SENTENCE _IN_VC...cciiiiieiie ettt 14
4.2.4. Funkcija syllables_rules ... 15
Osnovne upute za KoriStenje algoritmacccvevivieiiiieiiiie e 19

6. Izrada web aplikacije i korisniCkog su€elja........ccoovviiiiiiiiiiiiiiiici 21

6.1. Osnovne upute za koriStenje web sucelja........cccovviriiiiiiiiiiiii 21
7. TeStiranje algoritiMa.......c.cccveiieiieiieie et re e re e e 25

7.1, SKUP teSNIN TTHECT vvviiuiiiiiiii ittt 25

7.2. Programska skripta za racunanje mjere tOCNOStLccevvevireeiiniiiieneere e 26
8. Rezultati i analiza uspjeSnosti programske sKripte..........coccoviriiiiiiiiiiiicnice, 30
ZAKIJUCAK ...ttt bbb e e nnes 32
0] O] S 1 VOSSR 33
POPIS KOAOVA ...ttt bbbttt 34
POPIS NAMBUDA. ... 35
LEEIALUIE .. 36
Prilog: programski KOcoveiieiiiiic it reens 37

1. Uvod

U ovoj projektnoj dokumentaciji bit ¢e objasnjen i prikazan proces izrade algoritma koji
omogucava rastavljanje rije¢i na slogove, a odnosi se na njemacko jezicno podrucje.
Odnosno, bit ¢e dokumentirano specificno tacitno i eksplicitno lingvisticko znanje te

njegova pretvorba i formalizacija za potrebe kreiranja algoritma silabifikacije.

Konacan cilj projekta je stvaranje algoritma i aplikacije koji bilo koju rije¢ na njemackom
jeziku zna rastaviti na slogove. To¢nije, za bilo koji tekst na ulazu, generira isti taj tekst na
izlazu, ali u obliku rastavljenom na slogove dodajué¢i znak razmaka izmedu susjednih

slogova.
Primjer za hrvatski tekst na ulazu:

, Analiza slogova kao osnovnih elemenata jezika vazna je za razlicite postupke u domeni

racunalne analize prirodnoga jezika i govornih tehnologija. *
Rezultat na izlazu:

A nali za slo go va ka o os nov nih e le me na ta je zi ka va zna je za ra zIi Ci te po stup ke

u do me ni ra ¢u nal ne a na li ze pri ro dno ga je zi ka i go vor nih teh no lo gi ja. “

Na temelju prikupljenih eksplicitnih i tacitnih znanja koje su prikupili, definirali i zapisali
lingvisti za njemacki jezik, cilj je formalno zapisati ta ista pravila koristec¢i programski jezik
Python.

Na osnovu zapisanih pravila potrebno je kreirati algoritam za rastavljanje rijeci na slogove.

Postupak rastavljanja na slogove nije uvijek trivijalan ni jednoznacan. Zbog toga je potrebno

postovati pravila njemackog jezika.

2. Algoritam

U ovome poglavlju bit ¢e objasnjeno §to je to algoritam. Algoritam je skup konaénih pravila
ili uputa koje treba slijediti u izra¢unima ili drugim operacijama rjeSavanja problema, ili pak
postupak za rjeSavanje matematickog problema u konacnom broju koraka koji Cesto

ukljucuje rekurzivne operacije.

Prema tome algoritam se odnosi na niz konac¢nih koraka za rjeSavanje odredenog problema.

Set pravila kako bi se
postigao Zeljeni izlaz na
temelju ulaza

Ulaz Izlaz

Algoritam

Slika 1: algoritam prikazan na slikovni nacin

Svaki puta kada koristimo telefon, racunalo ili kalkulator primjenjujemo algoritme. Sli¢no

tome, algoritmi pomazu obaviti zadatak u programiranju kako bi se dobio o¢ekivani rezultat.

2.1. Karakteristike algoritma

Da bi neke instrukcije bile algoritam, algoritam mora imati sljedece karakteristike:

a) Jasan i nedvosmislen: algoritam bi trebao biti jasan i nedvosmislen. Svaki njegov
korak treba biti jasan u svim aspektima i mora voditi samo jednom znacenju.

b) Dobro definirani ulazi: ako algoritam kaZe da treba uzeti ulaze, to bi trebali biti
dobro definirani ulazi. Moze, ali i ne mora uzeti unos.

c) Dobro definirani izlazi: algoritam mora jasno definirati koji ¢e se izlazi dati i on
takoder treba biti dobro definiran. Treba provesti najmanje 1 izlaz.

d) Konac¢nost: algoritam mora biti konacan, tj. trebao bi zavrSiti nakon konac¢nog

vremena.

e) lzvedivo: algoritam mora biti jednostavan, genericki i prakti¢an, takav da se moze
izvr$iti s raspolozivim resursima. Ne sadrzavati neku tehnologiju buduénosti ili nesto
sli¢no.

f) Neovisan o jeziku: dizajnirani algoritam mora biti neovisan o jeziku, tj. to moraju
biti jednostavne instrukcije koje se mogu implementirati na bilo kojem jeziku, a ipak

¢e izlaz biti isti, kao Sto se oCekuje.

Jasani nedvosmislen}< >%obro definirani izlazi

Izvedivost

Dobro definirani ulazi Karakteristike algoritma

‘;[Neovisnost o jeziku

Konacénost }1

Slika 2: slikovni prikaz karakteristika algoritma

2.2. Dizajn algoritma

Za pisanje algoritma potrebne su sljedece stvari kao preduvjet:

problem koji se algoritmom Zeli rijesiti, tj. jasna definicija problema
prilikom rjeSavanja problema moraju se uzeti u obzir ogranicenja problema
unos koji treba poduzeti za rjeSavanje problema

rezultat koji se moZe ocekivati kada se problem Zeli rijesiti

o b~ w0 D

rjeSenje problem je unutar zadanih ograni¢enja

Zatim se pomocu gornjih parametara piSe algoritam tako da rjeSava problem.

3. Lingvistic¢ka pravila za njemacki jezik

U nastavku bit ¢e prikazana lingvisti¢ka pravila koja formalno zapisuju postupak slogovanja.

3.1. Pretprocesiranje

Slova pojedine abecede prirodnog jezika mogu prouzrociti probleme u radu sa znakovnim
nizovima zbog nacina kodiranja (npr. simboli ¢, 7, §, d, Z, 1, §, n i sli¢ni). Takvi simboli mogu
se zamijeniti jednozna¢nim simbolima koji su jednostavniji za kodiranje. Ovaj problem je

rijesen tako da je koristen ,,Visual Studio Code* kao radno okruzenje.

Zatim je potrebno analizirati abecedu koja se Kkoristi u njemac¢kom jezi¢nom podruéju te
isprobati ucitavanje tekstualne datoteke u kojoj se nalaze takvi specificni znakovi. Takoder,
potrebno je omoguciti da se svaka rijec iz reCenice promatra zasebno, neovisno o razmacima
i razli¢itim interpunkcijskim znakovima koji se u reenici mogu nalaziti. Neki od

interpunkcijskih znakova su: I"#3%&'()*+,-./;;<=>?@[\]"_"{}~.

Takoder, promatranje svake rije¢i potrebno je omoguditi formalizmom samoglasnika i
suglasnika. Odnosno, svaku rije¢ na ulazu je potrebno promatrati kao niz samoglasnik (V) i
suglasnika (C). Kada rije¢i promatramo kao nizove samoglasnika i suglasnika (a ne kao
originalne rije¢i s pripadnim morfemima, tj. slovima) tada sukladno definiranim
lingvisti¢kim pravilima mozemo pronalaziti uzorke koji se u rijec¢i javljaju. Na temelju njih

rastaviti rijeci na slogove temeljem danih pravila koja se spominju kasnije u ovom poglavlju.

3.2. Abeceda, samoglasnici i suglasnici njemackog jezika

Abeceda njemackog jezika:
A B,C,D,EFGH,1,J,K L MNOPQR,STUVWXY,ZAOUR

Samoglasnici i suglasnici njemackog jezika:

SAMOGLASNICI -V — VOWELS:

Vokali (V): a,e,i,0, u, 4, 0, {, ei, ai, ey, ay, eu, du, ie, au; aa, ee, 00

SUGLASNICI — C— CONSONANTS:

Konsonanti (C): bcdfghjklmnpqgrstvwxyz R, sch, ch, ck, qu, ph

Tablica 1: samoglasnici i suglasnici njemackog jezika

3.3. Razrada algoritma na temelju lingvisti¢kih pravila

Rijeci, recenice ili tekst koji je dan na ulazu, na izlazu mora biti zapisan u obliku slogova.

Znakom razmaka obiljezavamo granice izmedu slogova.
3.3.1. Rastavljanje slozenica

Najprije je potrebno odvojiti jednokorijenske rije¢i u sloZenicama Kkoriste¢i Python

biblioteku compound-split.
Autobahnanschlussstelle
Autpbghn Anschlussstelle

Auto Bahn Anschluss Stelle

Slika 3: primjer rastavljanja slozenice u jednokorijenske rijeci

https://en.wikipedia.org/wiki/%C3%84
https://en.wikipedia.org/wiki/%C3%84
https://en.wikipedia.org/wiki/%C3%96
https://en.wikipedia.org/wiki/%C3%96
https://en.wikipedia.org/wiki/%C3%96
https://en.wikipedia.org/wiki/%C3%9C
https://en.wikipedia.org/wiki/%C3%9C
https://en.wikipedia.org/wiki/%C3%9F

3.3.2. Odvoijiti prefikse

Najprije, prefiks u gramatici nalazi se ispred korijena neke rije¢i. Dodavanje na pocetak
jedne rijeci, nju mijenja u drugu rije¢, ¢esto suprotnog znacenja. Na primjer, kada je prefiks

ne dodan na rije¢ sretan, stvara rije¢ nesretan.

Stoga, za njemacko jezicno podrucje potrebno je odvojiti prefikse koji zavrsavaju sljede¢im

konsonantima:

an, ab, auf, aus, dis, ein, fehl, her, hin, haupt, in, dar, durch, , los, mit, nach, von, vor,
weg, um, un, ur, ent, er, ver, zer, miss, mif3, niss, nif3, ex, non, super, trans, kon, hoch,
stink, stock, tief, tod, erz

Konsonanti koji se nalaze u donjem okviru su dvoslozni i oni ¢e se rastaviti u sljede¢em

koraku:

unter, Uber, hinter, wider, wieder, weiter, zurlick, zurecht, zusammen, hyper, inter

3.3.3. Uzorci za rastavljanje

U sljedecoj tablici su prikazani uzorci za rastavljanje rije¢i. Za lakSu interpretaciju

rastavljanje slogova prikazano je crticom ,,-*.

VCCV VC-CV
VCCCV VCC-CV
VCV V-CV

Tablica 2: prikaz uzoraka za rastavljanje rijeci na slogove

Trece pravilo koje je navedeno u tablici pokriva pravilo da intervokalni h pripada sljede¢em

slogu, upravo zbog intervokalnog C koji ide u sljedeci slog.

3.3.4. Raspis pravila za rastavljanje st, tz, i pf u sredini rijeci

U sljedecoj tablici su prikazana pravila za rastavljanje rijeci kad se st, tz i pf nalaze u sredini

rijeci. Za lakSu interpretaciju rastavljanje slogova prikazano je crticom ,,-*.

https://en.wikipedia.org/wiki/%C3%9F
https://en.wikipedia.org/wiki/%C3%9F
https://en.wikipedia.org/wiki/%C3%9F

VstV Vs-tV

VCstV VCs-tV
VstCV VS-tCV
VXtCV Vx-tCV
VizV Vt-zV

VCtzV VCt-zV
VizCV Viz-CV
VpfVv Vp-fvV

VCpfV VCp-fV
VpfCV Vpf-CV

Tablica 3: prikaz pravila za rastavljanje rijeci kad se st, tz i pf nalaze u sredini rijeci
3.3.5. Iznimke

U sljedecoj tablici su prikazana pravila za rastavljanje rije¢i kad se nalazi iznimka.

1. iznimka

Knie se rastavlja kao: Kni-e ako ispred njega stoje: die, der, ili ako prethodna rijec¢ zavrsi
na -eili-er, ali ne rastavlja se ako ispred rijeci koja zavrSava na -e stoji das, s time da ispred
das mora biti jednaili viSe rijeéi koje zavrSavaju na -e

2. iznimka

tsch vrijedi kao jedan C kad je na pocetku rijedi, tj. u poziciji tschV = CV i u poziciji na kraju
rijeci, tj. Vtsch =VC

kad se nade VtschCV, rastavlja se: Vtsch-CV
kad se nade VtschV, rastavlja se: Vt-schV

3. iznimka

Ako se u recenici nadu dva samoglasnika koji se ne nalaze u popisu vokala, tada oni
trebaju biti razdvojeni. Npr. za rije¢ poetisch i kad se nadu samoglasnici oe, oni trebaju
biti rastavljeni u obliku o-e, u konacénici po-e -tisch. Isto vrijedi i s rije¢i Nationen.

Tablica 4: tablica prikazuje pravila za rastavljanje rije¢i kad se nalazi iznimka

4. Programski kod algoritma

U nastavku ¢e biti opisan programski kod algoritma koji je napisan u programskom jeziku

Python. Takoder, bit ¢e nabrojani i opisani moduli ili biblioteke koje su koriStene.

4.1. Koristeni moduli

Moduli koji su koristeni za razvoj algoritma su:

o re
e string

e compound-split

import re, string
from compound_split import doc_split

Kdd 1: prikaz uklju¢enih modula

Detaljan opis modula nalazi se u nastavku.
4.1.1. Modul re —regularni izrazi

Modul re (engl. regular expression) je ugradena Python biblioteka koja omogucéava podrsku
za regularne izraze. Regularni izrazi su koristan alat za podudaranje teksta baziranog na
definiranom uzorku. Moze otkriti prisutnost ili odsutnost teksta tako §to ga povezuje s
odredenim uzorkom, a takoder moze podijeliti uzorak u jedan ili vise pod uzoraka. Njegova

primarna funkcija je ponuditi pretraZivanje, gdje uzima regularni izraz i niz.

Regularni izrazi u Pythonu mogu se Koristiti za rudarenje (pretrazivanje) ili za validaciju

podataka.

Regularni izrazi prilikom kreiranja algoritma su koristeni kako bi se u tekstu kojem su slova
zamijenjena u obliku samoglasnika (V) i suglasnika (C) pronasli uzorak koji se odnosi na
pravilo rastavljanja. Kad je taj uzorak pronaden tada je primijenjeno pravilo rastavljanja te

rijeci u zadanom tekstu.

4.1.2. Modul string

Modul string je ugradena Python biblioteka. Pruza mogucnosti zamjene sloZenih varijabli 1
oblikovanja vrijednosti putem format() metode. Omogucuje stvaranje i prilagodbu vlastitog

ponasSanja oblikovanja niza koristeci istu implementaciju kao ugradena funkcija formaty().

Modul string je koriSten pri razvoju algoritma najviSe zbog funkcije string.punctation.
Funkcija string.punctation u sebi sadrZi sve interpunkcijske znakove, tako da kad algoritam
dobije recenicu ili tekst kao input moze ignorirati sve interpunkcijske znakove i1 posvetiti se

rije¢ima.
4.1.3. Modul compound-split

Modul compound-split je Python modul za razdvajanje njemackih slozenica. Na primjer,
njemacka slozenica ,,autobahnanschlussstelle “ koja treba biti rastavljena na ,,auto bahn

anschluss stelle®.

Metoda izra¢unava vjerojatnost pojavljivanja n-grama na pocetku, kraju i u sredini rijeéi i
identificira najvjerojatnije mjesto za razdvajanje.

Autor se referencira na to da metoda postize ~95% toc¢nosti i da je model treniran na milion
njemackih imenica s Wikipedije.

Upute za instalaciju modula compound-split nalazi se u nastavku:

python -m venv env --prompt algorithm

pip install compound-split

Naredba 1: postavljanje virtualne okoline i instalacija modula compound-split

4.2. Opis glavnih dijelova algoritma

Algoritam se sastoji od globalnih varijabli, globalnih lista i triju funkcija. Detaljan opis uloga

funkcije i koriStenja globalnih varijabli bit ¢e opisan u ovome dijelu poglavlja.
4.2.1. Globalne liste i globalne varijable

Globalne varijable su one koje nisu definirane unutar funkcije i imaju globalni opseg, dok
su lokalne varijable one koje su definirane unutar funkcije i njihov je opseg ograni¢en samo

na tu funkciju. Drugim rije€ima, moZemo re¢i da su lokalne varijable dostupne samo unutar

9

funkcije u kojoj su inicijaliziran, dok su globalne varijable dostupne u cijelom programu

unutar svake funkcije. Isto vrijedi i za globalne liste.

Algoritam se sastoji od Cetiri globalne liste:

1. vovels — lista koja sadrzi popis samoglasnika

2. consonants — lista koja sadrzi popis suglasnika

3. prefixes — lista koja sadrzi popis prefiksa

4. splitting — lista koja sadrzi popis uzoraka
Vowels = [llall’ Ilell’ Ilill’ lloll’ llull’ Iléll’ lléllJ "U"J "ei", llaill’ "eyll) Ilayll)
lleull’ lléull’ lliell) Ilaull, llaall, lleell-, Ilooll
Consonants = [Ilbll) IICII, lldll, II_FII, Ilgll, IlhIlJ IIjIIJ IIkIIJ Illll-, Ilmll, Ilr]llJ IlpllJ
llqll’ llr‘ll’ IISII) Iltll) IIVII, IIWII, IIXII, Ilyll-, "Z"J IIBIIJ IISChII, Ilchll, "Ck", Il(qullJ
llphll]
pr‘e'FiXeS = [llanll’ Ilabll’ lIaU-Fll’ llausll’ "diS"J "ein", ll_Fehlll’ llher‘ll) Ilhinll)
llhauptll’ llinll’ Ildapll’ lldur\chll’ lllosll’ "mit", llnachllJ llvonll’ "VOr\") "Weg")
llumll’ llunll’ llur\ll) Ilentll, ller‘ll, "Ver\", "Zer\"J “miSS“J IlmiBIl, "niSS"J Ilr]il';"J
IIeXII’ llnonll’ "Super\"’ lltr‘ansll’ llkonll’ "hoch", "stink", "Stock", Iltie_Fll)

"tOd", "er‘Z",

"zuriick", "zurecht", "zusammen", "hyper", "inter"]

splitting = ["vCCv", "vCCCV", "vCv", "W"]

sentence "Mein name ist Antonio"

Kod 2: globalne varijable i globalne liste

4.2.2. Funkcija syllabels_rules_execeptions

"unter", "lber", "hinter", "wider", "wieder", "weiter",

Funkcija syllables_rules_exeptions prima jedan parametar, a to je varijabla sentence. Ovom

funkcijom rjesava se pravilo rastavljanja slozenica, 1. iznimke i 2. iznimke. Gdje ujedno

funkcija vrac¢a reCenicu U kojoj su pokrivena navedena pravila.

def syllables rules_exceptions(input_sentence):
global prefixes
global vowels
global consonants

10

doc_split.MIDDLE_DOT = " "
sentence_doc_split = doc_split.doc_split(input_sentence)
sentence_exceptions _knie = sentence doc_split.split(" ")
regex_list_of list = []
for word in sentence_exceptions_knie:
regex = re.findall(r'(?i)knie.*"', word)
if not regex:
regex_list_of _list.append("X")
else:
regex_list_of_list.append(regex)
regex_list = [val for sublist in regex_list_of_list for val in
sublist]

sentence_checksum = sentence_exceptions_knie
if len(regex_list) == len(sentence_checksum):
index = ©
while index < len(sentence_checksum):
if regex_list[index].lower() ==
sentence_exceptions_knie[index].lower():
if index == @ and sentence_exceptions_knie[index].lower() ==

"knie":

sentence_exceptions_knie[index]
sentence_exceptions_knie[index]

elif sentence_exceptions_knie[index - 1][-1:] == "e" and
sentence_exceptions _knie[index - 2] == "das" and
sentence_exceptions knie[index - 3][-1:] == "e":

sentence_exceptions_knie[index] ==

sentence_exceptions_knie[index]

elif sentence_exceptions_knie[index - 1].lower() == "die" or
sentence_exceptions_knie[index - 1].lower() == "der" or
sentence_exceptions knie[index - 1][-1:].lower() == "e":

letter_index =
sentence_exceptions _knie[index].lower().find("knie")
word = sentence_exceptions_knie[index]
sentence_exceptions_knie[index] = word[:letter_index +
31 + " " + word[letter_index + 3:]
index += 1
sentence_knie = ' '.join(sentence_exceptions_knie)
sentence_prefixes = sentence_knie.split(" ")

for prefix in prefixes:
prefix_length = len(prefix)
for word in sentence prefixes:
if word[:prefix_length] == prefix:
index = sentence_prefixes.index(word)
sentence_prefixes[index] = word[:prefix_length] + " " +
word[prefix_length:]

11

sentence_split_prefixes = ' '.join(sentence_prefixes)
sentence_vc = sentence split prefixes.split(" ")

regex_list_of list = []
for word_vc in sentence_vc:
regex = re.findall(r'.*tsch.*', word_vc)
if not regex:
regex_list_of_list.append("X")
else:
regex_list_of list.append(regex)
regex_list = [val for sublist in regex_list_of_list for val in sublist]

if len(regex_list) == len(sentence_vc):
index = ©
while index < len(sentence_vc):
if regex_list[index].lower() == sentence_vc[index].lower():

sentence_length_01 = len(sentence_vc[index]) - 1
sentence_length_02 = len(sentence_vc[index])
tsch_length = len("tsch")
letter_index = sentence_vc[index].find("tsch")

if letter_index ==
word = sentence_vc[index]
sentence_vc[index] = "C" + word[tsch_length:]

if letter_index == sentence_length_01 - tsch_length or
letter_index == sentence length 02 - tsch_length:
word = sentence_vc[index]
sentence_vc[index] = word[:letter_index] + "C"
index += 1
sentence_join = ' '.join(sentence_vc)
sentence_letters = list(sentence_join)

counter = 0
for letter in sentence_letters:
for sign in consonants:

if letter == sign.upper() or letter == sign.lower() and letter
!= string.punctuation:
sentence_letters[counter] = "C"

for sign in vowels:
if letter == sign.upper() or letter == sign.lower() and letter
I= string.punctuation:
sentence_letters[counter] = "V"
counter += 1

sentence_in_vc = ''.join(sentence_letters)

12

sentence_vc = sentence_in_vc.split(" ")
sentence = sentence_split prefixes.split(" ")

regex_list_of list = []
for word_vc in sentence:
regex = re.findall(r'.*tsch.*', word_vc)
if not regex:
regex_list_of _list.append("X")
else:
regex_list_of_list.append(regex)
regex_list = [val for sublist in regex_list_of_list for val in sublist]

if len(regex_list) == len(sentence):
index = ©
while index < len(sentence):
if regex_list[index].lower() == sentence[index].lower():

sentence_length_01 = len(sentence[index]) - 1
sentence_length_02 = len(sentence[index])
tsch_length = len("tsch")
letter_index = sentence[index].find("tsch")

if letter_index != 0 and letter_index != sentence_length_01
- tsch_length and letter_index != sentence_length_02 - tsch_length:
word = sentence[index]

if sentence_vc[index][letter _index - 1] == "V" and
sentence_vc[index][letter_index + tsch_length] == "C" and
sentence_vc[index][letter_index + tsch_length + 1] == "V":
sentence[index] = word[:letter_index + 4] + " " +
word[letter_index + 4:]
if sentence_vc[index][letter_index - 1] == "V" and
sentence_vc[index][letter _index + tsch_length] == "V":
sentence[index] = word[:letter_index + 1] + " " +

word[letter_index + 1:]
index += 1

sentence_tsch = ' '.join(sentence)
return sentence_tsch

Kdd 3: funkcija slyllabels_rules_exceptions

13

4.2.3. Funkcija sentence _in_vc

Funkcija sentence_in_vc prima jedan parametar, a to je varijable sentence. Ova funkcija
danu recenicu pretvara u tekst kojem su slova zamijenjena u obliku samoglasnika (V) i
suglasnika (C). Gdje funkcija ujedno vraca recCenicu u navedenom obliku. Na primjer,
reCenica ,,Mein name ist Antonio“ je pretvorena u sljede¢e ,,CVVC CVCV VCC
VCCVCVV*,

def sentence_in_vc(input_sentence):
global vowels
global consonants

sentence_letters = list(input_sentence)
sentence = input_sentence.split(" ")

regex_list_of_list = []
for word_vc in sentence:
regex = re.findall(r'.*tsch.*', word_vc)
if not regex:
regex_list_of list.append("X")
else:
regex_list of list.append(regex)
regex_list = [val for sublist in regex_list of_list for val in sublist]
if len(regex_list) == len(sentence):
index = ©
while index < len(sentence):
if regex_list[index].lower() == sentence[index].lower():
sentence_length_01 = len(sentence[index]) - 1
sentence_length_02 = len(sentence[index])
tsch_length = len("tsch")
letter_index = sentence[index].find("tsch")

if letter_index ==
word = sentence[index]
sentence[index] = "C" + word[tsch _length:]

if letter_index == sentence_length 01 - tsch_length or
letter_index == sentence length 02 - tsch_length:
word = sentence[index]
sentence[index] = word[:letter_index] + "C"
index += 1
sentence_join = ' '.join(sentence)
sentence_letters = list(sentence_join)

counter = 0

14

for letter in sentence_letters:
for sign in consonants:
if letter == sign.upper() or letter =
!= string.punctuation:
sentence_letters[counter] = "C"
for sign in vowels:
if letter == sign.upper() or letter =
!= string.punctuation:
sentence_letters[counter] = "V"
counter += 1

sign.lower() and letter

sign.lower() and letter

sentence_vc = ''.join(sentence_letters)
return sentence_vc

Kod 4: funkcija sentence_in_vc
4.2.4. Funkcija syllables_rules

Funkcija syllabels_rules prima jedan parametar, a to je varijable sentence. ovom funkcijom
rjesava se 3. pravilo i 3. iznimku. Gdje ujedno funkcija vraca recenicu u kojoj su pokrivena

navedena pravila.

def syllables_rules(input_sentence):
global splitting
global vowels

sentence = input_sentence.split(" ")
sentence_vc = sentence_in_vc(input_sentence).split(" ")

for split in splitting:
if split == "vCCv":
regex_list of list = []
for word_vc in sentence_vc:
regex = re.findall(r'.*{}.*'.format(split), word_vc)
if not regex:
regex_list_of list.append("X")
else:
regex_list of list.append(regex)
regex_list = [val for sublist in regex_list_of 1list for val in
sublist]
if len(regex_list) == len(sentence_vc):
index = ©
while index < len(sentence_vc):
if regex_list[index] == sentence_vc[index]:
letter_index = sentence vc[index].find(split)
word = sentence[index]

15

sentence[index] = word[:letter_index + 2] + +
word[letter_index + 2:]

index += 1

sentence_splitting = ' '.join(sentence)
sentence_splitting vc = ' '.join(sentence)
sentence = sentence_splitting.split(" ")

sentence_vc = sentence_in_vc(sentence_splitting vc).split(" ")

for split in splitting:
if split == "VCCCV":
regex_list_of_list = []
for word_vc in sentence_vc:
regex = re.findall(r'.*{}.*'.format(split), word_vc)
if not regex:
regex_list_of_list.append("X")
else:
regex_list_of list.append(regex)
regex_list = [val for sublist in regex_list_of_list for val in
sublist]

if len(regex_list) == len(sentence_vc):
index = ©
while index < len(sentence_vc):
if regex_list[index] == sentence vc[index]:
difference_st = sentence[index].find("st") -
sentence_vc[index].find("VCCCV")
difference_xt = sentence[index].find("xt") -
sentence_vc[index].find("VvCCCV")

if difference_st == 1 or difference_xt ==
letter_index = sentence vc[index].find(split)
word = sentence[index]
sentence[index] = word[:letter_index + 2] +

+ word[letter_index + 2:]

else:
letter_index = sentence vc[index].find(split)
word = sentence[index]
sentence[index] = word[:letter_index + 3] + "

+ word[letter_index + 3:]
index += 1

sentence_splitting = ' '.join(sentence)

sentence_splitting vc = '.join(sentence)
sentence = sentence_splitting.split(" ")

16

sentence_vc = sentence_in_vc(sentence_splitting vc).split(" ")

for split in splitting:
if split == "VCV":
regex_list_of list = []
for word_vc in sentence_vc:
regex = re.findall(r'.*{}.*'.format(split), word_vc)
if not regex:
regex_list_of_list.append("X")
else:
regex_list_of list.append(regex)
regex_list = [val for sublist in regex_list_of_list for val in
sublist]

if len(regex_list) == len(sentence_vc):
index = ©
while index < len(sentence_vc):
if regex_list[index] == sentence vc[index]:
letter_index = sentence_vc[index].find(split)
word = sentence[index]
sentence[index] = word[:letter_index + 1] + " " +
word[letter_index + 1:]

index += 1
sentence_splitting = ' '.join(sentence)
sentence_splitting vc = ' '.join(sentence)
sentence = sentence splitting.split(" ")
sentence_vc = sentence_in_vc(sentence_splitting vc).split(" ")

for split in splitting:
if split == "wW":
regex_list of list = []
for word_vc in sentence_vc:
regex = re.findall(r'.*{}.*'.format(split), word_vc)
if not regex:
regex_list_of list.append("X")
else:
regex_list of list.append(regex)
regex_list = [val for sublist in regex_list_of 1list for val in
sublist]

index = ©
if len(regex_list) == len(sentence_vc):
index = ©
while index < len(sentence_vc):
if regex_list[index] == sentence vc[index]:
letter_index = sentence_vc[index].find(split)

17

word[letter_index + 1]
+ word[letter_index + 1:
inde

sentence_splitting =
return re.sub(' +',

word = sentence[index]
vowels_check = word[letter_index] +

if vowels_check.lower() not in vowels:
sentence[index] = word[:letter_index + 1] +

]

X +=1

'.join(sentence
, sentence_splitting)

Kod 5: funkcija syllabels_rules

18

5. Osnovne upute za koristenje algoritma

U ovome poglavlju bit ¢e prikazano kako Koristiti algoritam. Algoritam je jednostavan za

koristenje, bitno je imati ulaznu recenicu koja se zeli rastaviti na slogove.

Na primjer, ako u algoritmu zadamo recenicu ,,Mein name ist Antonio.“ tada tu re¢enicu

pomocu varijable prosljedujemo u funkciju.

sentence = "Mein name ist Antonio."

syllables_rules(syllables_rules_exceptions(sentence))

K&d 6: primjer prosljedivanja varijable koja je tipa string u funkciju
Kao $to vidimo iz primjera koristi se ugnjezdivanje funkcije, gdje u funkciju syllables_rules
prosljedujemo izlaz funkcije syllables rules exceptions, u koju opet prosljedujemo danu

reéenicu.

Algoritam je implementiran na ovaj nacin jer temeljem testiranja ovako dobiva najbolje
rezultate, odnosno ne dogadaju se anomalije i sudaranja pravila jedno s drugim prilikom

pokretanja programa.

Medutim, jednim prolazom algoritma kroz rijec ili reCenicu ne razdvaja sve slogove. Stoga,
kako bi algoritam u potpunosti rastavio sve slogove u rijeci ili reCenici potrebno je pokrenuti
funkcije u tri kruga, odnosno tri puta. Pri kreiranju algoritma zakljucak je da pokretanje

funkcije u tri kruga rastavlja sve rije¢i koje u prethodna dva kruga nisu obuhvacene.

sentence = "Mein name ist Antonio."
prvi_krug = syllables_rules(syllables_rules_exceptions(sentence))
drugi krug = syllables rules(syllables rules_exceptions(prvi_krug))

treci_krug = syllables rules(syllables rules_exceptions(drugi krug))

print(treci_krug)

Kad 7: primjer pokretanja funkcija u tri kruga

19

Kao $to mozemo vidjeti u prethodnom primjeru nad danom recenicom pokrenuli smo
funkciju syllables_rules tri puta i spremili ju u varijablu, te smo tu varijablu kao rezultat
pokrenute funkcije proslijedili ponovno toj istoj funkciji syllables rules. Na kraju smo

varijablu treci_krug ispisali na konzolu kao konac¢an rezultat rastavljene rijeci ili reCenice.

324 sentence = "Mein name ist Antonio.”

325

326 prvi_krug = syllables rules(syllables_rules_exceptions(sentence))
327 drugi_krug = syllables_rules(syllables_rules_exceptions(prvi_krug))
328 treci_krug = syllables rules(syllables rules_exceptions(drugi krug))

329

330 print(treci_krug)

331

PROBLEMS ~ OUTPUT DEBUG CONSOLE TERMINAL

(accuracy) PS Di\Faks - OIRI\Diplomski\PZRZ\Projekt\word syllables accuracy> & "d:/Faks - OIRI/Diplomski/PZRZ/Projekt/word syllables accuracy
/env/Scripts/python.exe™ "d:/Faks - OIRI/Diplomski/PZRZ/Projekt/word syllables_ accuracy/algorithm.py”
|Mein na me 1st An to ni o.|

Slika 4: prikaz rastavljene recenice

20

6. lzrada web aplikacije i korisnickog sucelja

Nakon $to je algoritam kreiran, moguce je izraditi funkcionalnu web aplikaciju. Izradeno je

programsko sucelje u kojem korisnik moze odabrati jednu od dviju opcija.

1. Korisnik samostalno upisuje rije¢ ili re¢enicu na ulazu preko standardnog ulaza
(tipkovnica), a program ¢e mu odmah za uneseni tekst ispisati na zaslonu rastavljeni
tekst na slogove.

2. Korisnik odabire putanju na svojem racunalu do tekstualne datoteke (.txt) u kojoj je
zapisan tekst kojeg Zeli ocitati na ulazu, a rastavljeni tekst na slogove ispisuje na

ekran.

Web aplikacija izradena je u Flask-u. Flask je Python web framework, namijenjen razvoju
web aplikacija. Po svojoj veli¢ini smatra se micro-frameworkom, zbog cega je vrlo
popularan kao alat za u¢enje web programiranja u Pythonu. Naziva ga se i non-full-stack
frameworkom, za razliku od full-stack frameworka poput Djanga ili TurboGearsa. No, to ne
znac¢i da Flak nije mocan poput navedenih platformi, jer je dizajniran sa svrhom da bude
lako prosirivi uz pomo¢ tzv. Flask ekstenzija. Dakle, sam Flask nudi temelje za razvoj, a
brojne ekstenzije nude mogucnost da web aplikacija bude lako prosiriva s onime §to korisnik
zahtjeva (poput rada s web formama, autentifikacije, pristupa bazama podataka, prijavama i
sl.).

Za razvoj web aplikacije odabran je Flask jer izrada same web aplikacije nije zahtjevna,

odnosno zahtjeva samo jedan ulaz i jedan izlaz.

U ovome poglavlju Flask se ne¢e spominjati u detalje ve¢ ¢e biti prikazane snimke zaslona
kako je aplikacija implementirana i kako ju koristiti kao korisnik. A kod web aplikacije moze
se pronaci u zadnjem poglavlju ,,Prilog: programski kod* gdje se nalazi URL do GitHub

repozitorija.

6.1. Osnovne upute za koriStenje web sucelja

Pocetna stranica web sucelja sastoji se od naslova, podnaslova i triju gumba. Korisnik na

odabir gumba odabire Zeljenu opciju koju Zeli izvrsiti nad tekstom. Tako na primjer klikom

21

na prvi gumb korisnik odabire opciju da ¢e ru¢no (pomocu tipkovnice) unijeti tekst za

obradu, odnosno na rastavljanje na slogove.

German word syllables

Choose option:

Input as a text. Input as a txtfile. Algorithm accuracy measure.

Slika 5: prikaz pocetne stranice web sucelja

Kad korisnik pritisne na gumb ,,Input as a text.“ otvara mu se web stranica koja se sastoji
od:

a) naslova

b) forme za unos teksta

¢) gumba za potvrdu i resetiranje rezultata

d) polja za prikaz rezultata

e) Gumb za vracanje na pocetnu stranicu

German word syllables - text input

Type word or sentence

Mein name ist Antonio.

Confirm/Reset

Result:
Given text:

Mein name ist Antonio.

Text divided into syllables:

Mein na me ist An to ni o.

CVWC CV CV VCCVC CV QV V.

Go back.

Slika 6: prikaz korisnickog sucelja kad korisnik pritisne gumb ,,Input as a text.*

22

Kad korisnik pritisne na gumb ,,Input as a .txt file.“ otvara mu se web stranica koja se sastoji
od:

a) naslova

b) forme za unos dokumenta u .txt formatu
€) gumba za ucitavanje dokumenta za obradu
d) gumba za resetiranje

e) polja za prikaz rezultata

f) gumb za vracanje na pocetnu stranicu

German word syllables - upload file

Select txt file:

Select txt file Browse

Upload txt file

Reset
File name: german.txt

Result:

Given text:

Mein name ist Antonio.

Text divided into syllables:

Mein na me ist An to ni o.

Go back.

Slika 7: prikaz korisni¢kog sucelja kad korisnik pritisne gumb ,,Input as a .txt file.*

Kad korisnik pritisne na gumb ,,Algorithm accuracy measure.* otvara mu se web stranica

koja se sastoji od:

a) naslova

b) testnih rijeci

c) verificiranih razdvojenih rijeci

d) rezultata koji algoritam postize pri razdvajanju testnih rije¢i

e) gumba za vrac¢anje na pocetnu stranicu

23

German word syllables - accuracy

Test words:

["Diat", "Knie", "die knie", "der knie", “reise knie", "Auto”, "Seeufer”, "Katze", "Tatze", "Pfiitze", "putzen”, "platzen", "Birste", "Kiste", "Hamster", "Fenster",

darstellen”, "erstarren”, "pl6tzlich”, "Postauto”, "Kratzbaum®, "boxen”, "heben", "rodeln”, "Schifffahrt", "Mussspiel”, "wichtigsten”, "besuchen”,
"Kreuzklemme", "Foxtrott", "witzlos", "witzig", "wegschmeiBen",
"Bettiberzug", W|rt5chaft" "Beziehungsknatsch”, "Gletscher", "Wurstscheibe", "Borretschgewéchs”, "Bodden”, "Handball", "Neubau", "Stalltur
"Autobahnanschlussstelle”, “Laufschuhe”, "Baustelle”, "Lebkuchen”, "Himbeere", "Klassenzimmer", "Hubbleteleskop", "Botschaft", "Schokoladenfabrik”,
, "Schweinebraten”, "Halsschmerzen" "Weihnachtsbaum®”, "Kugelschreiber ohnensalat”,

"Freundschaftsbezeigung"”, "Weihnachtsmannfigur”, "Glasflichenreinigung"]

Verified splitted words:

[“Dl at", "Knie", "die kni e", "der kni e", "rei se kni e", "Au to", "See ufer", "Kat ze", "Tat ze", "Pfiit ze", "put zen", "plat zen", "Birs te", "Kis te", "Hams ter", "Fens

er", "hin stel len" r stel len”, "er star ren", "pl6tz lich”, "Post au to", "Kratz baum”, "bo xen", "he ben", "ro deln”, "Schiff fahrt", "Muss spiel”, "wich tigs ten",

"be su chen”, "ge win nen”, "ver ges sen b an geln”, "Kreuz ot ter”, "po e tisch”, "Na ti o nen”, "a ber”, "ii ber", "Kreuz klem me ", "witz los ", "wi

zig", "weg schmei Ben”, "Bett (i ber zug", "wirt schaft", "Be zieh ungs knatsch”, "Glet scher”, "Wurst schei be", "Bor retsch ge wachs”,

“Neu bau®, "Stall tdr", "Au to bahn an schluss stel le”, “Lauf schu he”, "Bau stel le”, “Leb ku chen”, "Him bee re", "Klas sen zim mer", "Hub ble te |e skop”, "Bot
cho ko la den fa brik", "Hiih ner sup pe”, "Schwei ne bra ten”, "Hals schmer zen", "Welt an schau ung”, "Welt schmerz”, "Weih nachts baum", "Ku gel

Boh nen sa la eund schafts be zei gung”, "Weih nachts mann fi gur”, "Glas flach en rei ni gung"]

Result:

Full measure of accuracy: 0.78 Correct words: 56 Uncorrect words: 16 Number of words: 72 Partial measure of accuracy: 0.87 Partial correct words: 62.53
Partial uncorrect words: 9.47 Number of words: 72

Go back.

Slika 8: web stranica koja prikazuje mjeru to¢nosti algoritma

24

7. Testiranje algoritma

Nacinjeni algoritam potrebno je testirati na pripremljenom skupu testnih rijeci za njemacki
jezik. Uspjesnost algoritma izrazena je numericki koriste¢i mjeru kojom se mjeri to¢nost
(engl accuracy). To¢nost algoritma mjeri se na temelju uspjesno rastavljenih rije¢i u skupu

svih rijeci. Izracun je napravljen programskom skriptom koja to sama racuna.

Takoder, kako bi preciznost uspjesno rastavljenih rijeci bila Sto to¢nija koriStena je mjera za

djelomic¢nu toc¢nost (npr. kada je dio rijeci rastavljen dobro, a drugi dio nije i sl.)

7.1. Skup testnih rijeéi

U nastavku se nalazi popis testnih rije¢i koje su dane na testiranje i evaluaciju. Takoder, za
dane testne rijeci, dani su primjeri i za to¢no rastavljene rijeci kako bi se mogla napraviti

mjera tocnosti.

Skup testnih rijeci i verificiranih rastavljenih rije¢i u Pythonu, napravljene su dvije liste kako

bi se nad njima mogla izvrSiti mjera to¢nosti.
Skup testnih rijeci:

test_words = ["Diat", "Knie", "die knie", "der knie", "reise knie", "Auto",
"Seeufer", "Katze", "Tatze", "Pfutze", "putzen", "platzen", "Bilirste",
"Kiste", "Hamster", "Fenster", "hinstellen", "darstellen", "erstarren",
"plotzlich", "Postauto", "Kratzbaum", "boxen", "heben", "rodeln",
"Schifffahrt", "Mussspiel™, "wichtigsten", "besuchen", "gewinnen",
"vergessen", "abangeln", "Kreuzotter", "poetisch", "Nationen", "aber",
"Uber", "Kreuzklemme", "Foxtrott", "witzlos", "witzig", "wegschmeifen",
"Bettiiberzug", "wirtschaft", "Beziehungsknatsch", "Gletscher",
"Wurstscheibe", "Borretschgewachs", "Bodden", "Handball", "Neubau",
"Stalltir", "Autobahnanschlussstelle"”, "Laufschuhe", "Baustelle",
"Lebkuchen", "Himbeere", "Klassenzimmer", "Hubbleteleskop", "Botschaft",
"Schokoladenfabrik", "Hihnersuppe", "Schweinebraten", "Halsschmerzen",
"Weltanschauung", "Weltschmerz", "Weihnachtsbaum", "Kugelschreiber",
"Bohnensalat"”, "Freundschaftsbezeigung", "Weihnachtsmannfigur",
"Glasflachenreinigung"]

Kod 8: prikaz skupa testnih rijeci

25

Skup testnih rijeci koje su ispravno rastavljene:

verify_words = ["Di at", "Knie", "die kni e", "der kni e", "rei se kni e",
"Au to", "See ufer", "Kat ze", "Tat ze", "Pfut ze", "put zen", "plat zen",
"Blirs te", "Kis te", "Hams ter", "Fens ter", "hin stel len", "dar stel len",
"er star ren", "plotz lich", "Post au to", "Kratz baum", "bo xen", "he ben",
"ro deln", "Schiff fahrt", "Muss spiel", "wich tigs ten", "be su chen", "ge
win nen", "ver ges sen", "ab an geln", "Kreuz ot ter", "po e tisch", "Na ti

o nen", "a ber", "U ber", "Kreuz klem me", "Fox trott", "witz los ", "wit
zig", "weg schmei Ren", "Bett U ber zug", "wirt schaft", "Be zieh ungs
knatsch", "Glet scher", "Wurst schei be", "Bor retsch ge wachs", "Bod den",
"Hand ball", "Neu bau", "Stall tir", "Au to bahn an schluss stel le", "Lauf
schu he", "Bau stel le", "Leb ku chen", "Him bee re", "Klas sen zim mer",
"Hub ble te le skop", "Bot schaft", "Scho ko la den fa brik", "Hih ner sup
pe", "Schwei ne bra ten", "Hals schmer zen", "Welt an schau ung", "Welt
schmerz", "Weih nachts baum", "Ku gel schrei ber", "Boh nen sa lat", "Freund
schafts be zei gung", "Weih nachts mann fi gur", "Glas flach en rei ni

gung"]

Kod 9: prikaz testnih rije¢i onako kako trebaju biti rastavljene

7.2. Programska skripta za raGunanje mjere to¢nosti

Za izradu programske skripte koja racuna mjeru to€nosti rastavljanja rijeci na slogove
kreirana je nova Python datoteka imena test_accuracy.py unutar direktorija u kojem se nalazi
Python datoteka algoritma imena algorithm.py. Cilj koji se Zeli postici je da se u datoteku
imena test_accuracy.py uveze datoteka algorithm.py radi ¢itkosti kdda.

import algorithm

Kod 10: prikaz koda za uvoz datoteke imena algorithm.py u datoteku test_accuracy.py

Programska skripta ra¢una mjeru to¢nosti tocno rastavljenih rijeci od ukupno rijeci i mjeru
toCnosti djelomicno tocno rastavljenih rijeci. Mjera djelomi¢no to¢no rastavljenih rijeci
racuna se prema toc¢no rastavljenim dijelovima rijeci od ukupno to¢no rastavljenih dijelova
rijeci. Na primjer, ako dana rijec ,,hinstellen* i treba biti rastavljena na nacin ,,hin stel len®,
a algoritam je rije¢ rastavio na ,,hin stell en“ tada se tocnost mjeri prema tocno rastavljenim
dijelovima rije¢i od ukupno toéno rastavljenih dijelova rije¢i. Sto je u ovom slu¢aju 1 todan

slog, a ostala 2 su neto¢na i to daje rezultat 1/3.

Moduli koji su korisSteni za izradu programske skripte su prettytable i termcolor. Modul
prettytable je koristen za generiranje ASCII tablice, dok je modul termcolor koristen za

isticanje rezultata na terminal u boji.

26

Module je potrebno zasebno instalirati jer nisu dio standardne Python biblioteke. Instalacija
modula se izvrsava na sljedeci nacin.

pip install prettytable

pip install termcolor
Naredba 2: instalacija zasebno koristenih modula

from prettytable import PrettyTable
from termcolor import colored

Kod 11: moduli koji su koristeni za izradu programske skripte

Osim prethodno spomenutih skupa testnih rijeci, rije¢i koje su ispravno rastavljene i opisa

koristenih modula, u nastavku se nalazi programska skripta koja obuhvaca navedeno.

import algorithm
from prettytable import PrettyTable
from termcolor import colored

test_words = ["Diat", "Knie", "die knie", "der knie", "reise knie", "Auto",
"Seeufer", "Katze", "Tatze", "Pfutze", "putzen", "platzen", "Biirste",
"Kiste", "Hamster", "Fenster", "hinstellen", "darstellen", "erstarren",
"plotzlich", "Postauto", "Kratzbaum", "boxen", "heben", "rodeln",
"Schifffahrt", "Mussspiel", "wichtigsten", "besuchen", "gewinnen",
"vergessen", "abangeln", "Kreuzotter", "poetisch", "Nationen", "aber",
"Uber", "Kreuzklemme", "Foxtrott", "witzlos", "witzig", "wegschmeiBen",
"Bettiiberzug", "wirtschaft", "Beziehungsknatsch", "Gletscher",
"Wurstscheibe", "Borretschgewachs", "Bodden", "Handball", "Neubau",
"Stalltir", "Autobahnanschlussstelle", "Laufschuhe", "Baustelle",
"Lebkuchen", "Himbeere", "Klassenzimmer", "Hubbleteleskop", "Botschaft",
"Schokoladenfabrik", "Hihnersuppe", "Schweinebraten", "Halsschmerzen",
"Weltanschauung", "Weltschmerz", "Weihnachtsbaum", "Kugelschreiber",
"Bohnensalat", "Freundschaftsbezeigung", "Weihnachtsmannfigur",
"Glasflachenreinigung"]

verify words = ["Di at", "Knie", "die kni e", "der kni e", "rei se kni e",
"Au to", "See ufer", "Kat ze", "Tat ze", "Pfut ze", "put zen", "plat zen",
"Blirs te", "Kis te", "Hams ter", "Fens ter", "hin stel len", "dar stel len",
"er star ren", "plotz lich", "Post au to", "Kratz baum", "bo xen", "he ben",
"ro deln", "Schiff fahrt", "Muss spiel", "wich tigs ten", "be su chen", "ge
win nen", "ver ges sen", "ab an geln", "Kreuz ot ter", "po e tisch", "Na ti
o nen", "a ber", "i ber", "Kreuz klem me", "Fox trott", "witz los ", "wit
zig", "weg schmei Ren", "Bett i ber zug", "wirt schaft", "Be zieh ungs
knatsch", "Glet scher", "Wurst schei be", "Bor retsch ge wachs", "Bod den",
"Hand ball", "Neu bau", "Stall tir", "Au to bahn an schluss stel le", "Lauf
schu he", "Bau stel 1le", "Leb ku chen", "Him bee re", "Klas sen zim mer",
"Hub ble te le skop", Bot schaft", "Scho ko la den fa brik", "Hih ner sup

pe", "Schwei ne bra ten", "Hals schmer zen", "Welt an schau ung", "Welt

27

schmerz", "Weih nachts baum", "Ku gel schrei ber", "Boh nen sa lat", "Freund
schafts be zei gung", "Weih nachts mann fi gur", "Glas flach en rei ni

gung”]
correct_words = []
partial correct_words = []

table = PrettyTable()
table.field_names = ['Test word', 'Verify word', 'Algorithm output’,
'"Partial correct word', 'Percent of partial word accuracy']

counter = 0
for word in test_words:
prvi_krug =
algorithm.syllables_rules(algorithm.syllables_rules_exceptions(word))
drugi_krug =
algorithm.syllables_rules(algorithm.syllables_rules_exceptions(prvi_krug))
treci_krug =
algorithm.syllables_rules(algorithm.syllables_rules_exceptions(drugi_krug))

algorithm_output = treci_krug

if algorithm_output == verify_words[counter]:
correct_words.append(1)
partial_correct_words.append(1)
table.add_row([word, verify words[counter], algorithm_output, "yes -
all", format(1l, ".2f")])
else:
correct_words.append(90)
word_split = algorithm_output.split()
verify words_split = verify words[counter].split()

part_number = len(verify_words_split)
part_correct = 0
for part_vws in verify_words_split:
for part_ws in word_split:
if part_ws == part_vws:
part_correct += 1

partial accuracy = part_correct / part_number
partial correct words.append(partial accuracy)
table.add_row([word, verify words[counter], algorithm_output, f"no -

{part_correct} of {part _number}", format(partial accuracy, ".2f")])

counter += 1

28

table.add_row([colored("---", "yellow"), colored("---", "yellow"),
colored("---", "yellow"), colored(f" correct:
{sum(partial correct words):.2f} of {len(partial correct _words) -
sum(partial_correct_words):.2f}", "yellow"),

colored(format(sum(partial correct words) / len(partial correct_words),
".2F"), "yellow")])

print(table)

print(f"Full measure of accuracy: {sum(correct_words) /
len(correct_words):.2f}\n"
f"Correct words: {sum(correct_words)}\n"
f"Uncorrect words: {len(correct words) - sum(correct words)}\n"
f"Number of words: {len(correct_words)}\n")

print(f"Partial measure of accuracy: {sum(partial_correct_words) /
len(partial_correct_words):.2f}\n"

f"Partial correct words: {sum(partial_correct_words):.2f}\n"

f"Partial uncorrect words: {len(partial correct _words) -
sum(partial_correct_words):.2f}\n"

f"Number of words: {len(partial_ correct_words)}\n")

Kod 12: programska skripta za ra¢unanje mjere to¢nosti

29

8. Rezultati i analiza uspjesSnosti programske

skripte

Ovaj dio dokumentacije ukljuCuje opise i interpretaciju dobivenih rezultata programske

skripte. Odnosi se na rijeci koje je algoritam rastavio iz skupa rijeci za testiranje.

Rezultat dobiven izra¢unom mjere to¢nosti potpuno rastavljenih rijeci iznosi: 0.78. Odnosno
78% uspjesnosti.

Measure of accuracy: 0.78
Correct words: 56
Uncorrect words: 16

Number of words: 72
Kod 13: mjera to¢nosti potpuno rastavljenih rijeci — izlaz iz terminala

Dok rezultat dobiven izraunom mjere to¢nosti djelomic¢no rastavljenih rijeci iznosi: 0.87.
Odnosno 87% uspjeSnosti §to je za 9% visSe u odnosu na prethodni rezultat.

Partial measure of accuracy: 0.87
Partial correct words: 62.53
Partial uncorrect words: 9.47

Number of words: 72
Kod 14: mjera to¢nosti djelomi¢no rastavljenih rijeci — izlaz iz terminala

Algoritam ne daje mjeru to¢nosti od 100% i teSko da ¢e se postic¢i takva to¢nost upravo zbog
koriStenog modula (compound-split) za rastavljanje slozenica u njemackom jezi¢nom
podrucju. Postoji jo$ jedan modul (german_compound_splitter) koji rastavlja sloZenice s

puno ve¢om to¢noscu jer koristi njemacki rje¢nik koji obuhvaca vise rije¢i. Navedeni modul

nije implementiran jer zadatak nalaze koristenje compound-split modula.

Takoder, unutar algoritma implementirana su sva pravila koja su u 3. poglavlju navedena

(,,Lingvisticka pravila za njemacki jezik*).

30

(accuracy) PS D:\Faks - OIRI'Diplomski‘\FZRI‘Projektiword_syllables sccuracy> & “d:/Faks - OIRI/Diplomski/PZRZ/Projekt/word_syllables_accuracy/env/Scrip

ts/python.exe” “d:/Faks - OIRI/Diplomski/PZIRI/Projekt/word_syllables_accuracy/test_accuracy.py

|

| Krie

| die knie

| der knie

| reise knie

| Auto

| Seeufer

| Katze

| Tatze

| Pfiitze

| putzen

| platzen

| Biirste

| Kiste

| Hamster

| Fenster

| hinstellen

| darstellen

| erstarren

| plétzlich

| Postauto

| Kratzbaum

| boxen

| heben

| rodeln

| Schifffahrt

| Mussspiel

| wichtigsten

| besuchen

| gewinnen

| vergessen

| zbangeln

| Kreuzotter

| poetisch

| Nationen

| aber

| iiber

| Kreuzklemms

| Foxtrott

| witzlos

| witzig

| wegschmeifen

| Bettiberzug

| wirtschaft

| Beziehungsknatsch
| Gletscher

| Wurstscheibe

| Borretschgewdchs
| Bodden

| Handball

| Neubau

| Stalltir

| Autobahnanschlussstelle
| Laufschuhe

| Baustelle

| Lebkuchen

| Himbeere

| Klassenzimmer

| Hubbleteleskop
| Botschaft

| Schokoladenfabrik
| Huhnersuppe

| Schuweinebraten
| Hzlsschmerzen

| Heltanschauung
| Weltschmerz

| Weihnachtsbaum
| Kugelschreiber
| Bohnensalat

| Freundschaftsbezeigung
| WeihnachtsmannFigur
| Glasflichenreinigung
I

Di &t
Knie
die kni e
der kni e
rel se kni e
Au to
See ufer
Kat ze
Tat ze
PfUt e
put zen
plat zen
Biirs te
Kis te
Hams ter
Fens ter
hin stel len
dar stel len
er star ren
platz lich
Post au to
Kratz baum
bo xen
he ben
ro deln
Schiff fahrt
Muss zpiel
wich tigs ten
be su chen
ge win nen
ver ges sen
ab an geln
Kreuz ot ter
po & tisch
Ma ti o nen
@ ber
U ber
Kreuz klem me
Fox trott
witz los
wit zig
weg schmei Gen
Eett O ber zug
wirt schaft
Be zieh ungs knatsch
Glet scher
Wurst schei be
Eor retsch ge wachs
Bod den
Hand ball
Neu bau
Stall tir

Au to bahn &n schluss stel le

Lauf schu he
Bau stel le
Leb ku chen
Him bee re
Klas sen zim mer
Hub ble te 1e skop
Bot schaft
Scho ko la den fa brik
Hih rer sup pe
Schwel ne bra ten
Hals schmer zen
Welt an schau ung
Welt schmerz
keih nachts baum
Ku gel schrei ber
Boh nen sa lat
Freund schafts be
keih nachts mann
Glas flich en rei

fi gur
ni gung

el gung

yf—_———— - - ———,—,—,—,—,—,—,—_—,—_—,—_—,—,—_——_——_——_——_——E—_—EC—E,—E,E—E,—,—E,E,—,—_E,—E,—E——E—E—E—E——E—E—E—E—E,,—,,e—_e—_—,——————— e — =

Di &t
Knie
die kni e
der kni e
rel se kni e
Au to

Seeu fer
Kat ze
Tat ze
PfUt e
put zen
plat zen
Biirs te
Kis te
Hams ter
Fens ter
hin stel len
dar stel len
er star ren
platz lich
Post au to
Kratz baum
bo xen
he ben
ro deln
Schiff fahrt
Muss zpiel
wich tigs ten
be suc hen
ge win nen
ver ges sen
ab an geln
Kreuz ot ter
po & tisch
Ma ti o nen
ab er
U ber
Kreuz klem me
Fox trott
witz los
wit zig
weg schmei Gen
Eett O ber zug
wirtschaft
Be zie hungsknatsch
Glet scher
Wurst schei be
Eor retsch ge wachs
Bod den
Hand ball
Neu bau
Stall tir

Au to bahn an schlussstel le

Lauf schu he
Baus tel le
Leb kuc hen
Him bee re
Klas sen zim mer
Hubb 1le te les kop
Bot schaft
Scho ko la den fab rik
Hih rer sup pe
Schwel ne bra ten
Hals schmer zen
Welt an schauung
Welt schmerz
keih nach tsbaum
Ku gel schrei ber
Boh nen sa lat
Freundschaftsbe zei gung
keih nach tsmann £i gur
Glas flic hen rei ni gung

=
=}
[V

F
s}
o

yes -
yes

yes -

=
=}
I

yes -
yes -
yes

yes -

yes -
yes -
no - 2
no - 3

no - 4
correct: 62

of 2

of 3

of 2
of 2
all
all
all
all
all
all
of 2
of 4
all
all
all
all
all
all
all
of 7
all
of 3
of 3
all
all
of 5
all
of &
all
all
all
of 4
all
of 3
all
all
of 5
of 5
of 6
.53 of 9.47

Slika 9: Tabli¢ni prikaz kako je algoritam rastavio rijeci

__________________________________ +

Percent of partial word accuracy |
__________________________________ +

2a
2a
a8
a8
a8
a8
aa
aa
aa
a3
a3
a3
a3
a3
a3
2a
2a
2a
a8
a8
a8
aa
aa
aa
aa
a3
a3
a3
33
a3
a3
2a
2a
2a
a8
a8
a8
aa
aa
aa
a3
a3
a3
a3
25
a3
a3
2a
2a
2a
a8
a8
71
aa
33
33
a3
a3
.48
a3
&7
a3
23
2a
8
2a
33
a8

FPERPORRROR RO ORRRRRRERSORRERRRERPRPRPSRRRPRERREORRERRPRERRERRERERRRERRRRRR R RS BB

.................................. +

31

Zakljuéak

U ovoj projektnoj dokumentaciji objasnjeno je $to je to algoritam, koje su karakteristike i
kako dizajnirati dobar algoritam. Navedena su lingvisti¢ka pravila koja je stru¢na osoba,
odnosno lingvist za njemacko jezi¢no podruéje dostavio. Opisan je programski kéd

algoritma i moduli koji su koristeni zajedno sa osnovnim uputama za koriStenje algoritma.

Za kreiran algoritam, izradena je web aplikacija i korisnicko sucelje gdje korisnik moze
odabrati Zeljeni opciju za rastavljanje teksta. Unos teksta ru¢no pomocu tipkovnice ili unos
teksta koristenjem .txt datoteke. Web aplikacija sadrzi i opciju koju korisnik moze odabrati

kako bi dobio uvid u to¢nost samog algoritma na danom skupu za testiranje.

Za kraj je kreirana skripta za testiranje to¢nosti algoritma. Algoritam je testiran na skupu
rije¢i koje je lingvist dostavio, a u svrhu mjerenja to¢nosti algoritma. Skripta za testiranje
to¢nosti algoritma mjeri potpunu tocnost i djelomi¢nu to¢nost. Bolji rezultat mjerenja
to¢nosti postize se testiranjem djelomicne tocnosti, a rezultat je bolji za 9% u odnosu na

mjerenje potpune tonosti.

Prilikom izrade ovog algoritma moze se zakljuciti da se to¢nost od 100% tesko postize iako
su sva pravila implementirana u algoritam. Razlog tome je §to modul compound-split ne
rastavlja dovoljno dobro njemacke slozenice. Kako bi potencijalno rijesili taj problem
potrebno je trenirati model na slozenicama koje se nalaze u testnome skupu, Koristiti

german_compound_splitter modul ili ru¢no napraviti iznimke.

32

Popis slika

Slika 1:
Slika 2:
Slika 3:
Slika 4:
Slika 5:
Slika 6:
Slika 7:
Slika 8:

Slika 9:

algoritam prikazan na sHKOVN NACINccvvveiiiiiiiieiiiie e 2
slikovni prikaz karakteristika algoritma...........c.cccevveieiiieie e 3
primjer rastavljanja sloZenice u jednokorijenske rijeCi........ccuvvviiiiviniiniiiiecieennennn 5
Prikaz rastavljene rECEMICEc.oiiiriiiiiiiiiiiee e 20
prikaz pocetne stranice Web SUCELac.ovvviiiiiiiiiiiiiii 22
prikaz korisnickog sucelja kad korisnik pritisne gumb ,,Input as a text.“.............. 22
prikaz korisnickog sucelja kad korisnik pritisne gumb ,,Input as a .txt file.” 23
web stranica koja prikazuje mjeru to¢nosti algoritma...........cceevveerveiiieniieineennns 24
Tabli¢ni prikaz kako je algoritam rastavio TieCi......covverririeiriieiiniiinieiise e 31

33

https://uniri-my.sharepoint.com/personal/antonio_janach_student_uniri_hr/Documents/Faks/Diplomski/PZRZ/Projekt%20-%20final/antonio_janach_-_projektna_dokumentacija.docx#_Toc124112730

Popis kodova

Kod 1: prikaz uklju€enih modulacoooviiiiiiiiiiii e 8
Kod 2: globalne varijable i globalne liSte..........ccooveiieiiiiiecc e 10
Kod 3: funkcija slyllabels_rules_eXCeptionsccccoeiiririiiniiiecee e 13
KOd 4: TUNKCIJa SENTENCE _IN_VC ...veivieiieie ettt sttt ens 15
Kod 5: funkcija syllabels TUIEScovoviiieece e 18
Kod 6: primjer prosljedivanja varijable koja je tipa string u funkciju.........ccovviriiiiennnns 19
Kod 7: primjer pokretanja funkcija u tri Kruga..........cccccoevveieeii i 19
Kod 8: prikaz skupa teStnih TECI . ..vvvieriiiiiiei i 25
Kod 9: prikaz testnih rijeci onako kako trebaju biti rastavljene............cccoovevvniiniiiiiinnnn, 26

Kod 10: prikaz kdda za uvoz datoteke imena algorithm.py u datoteku test_accuracy.py... 26

Kdd 12: moduli koji su koriSteni za izradu programske skripte.........ccocovervriiiiininninnrieninnn 27
Kod 13: programska skripta za raCunanje mjere toCNOSt......ueuveeereereeeeseesieenieseeseeeneenns 29
Kod 14: mjera to¢nosti potpuno rastavljenih rijeci — izlaz iz terminala...........cccccceevinenen. 30
Kod 15: mjera to¢nosti djelomi¢no rastavljenih rije¢i —izlaz iz terminala..............ccco..... 30

34

Popis naredba

Naredba 1: postavljanje virtualne okoline i instalacija modula compound-split................... 9

Naredba 2: instalacija zasebno koriStenih modulacccccevviiiiiiiiiiis 27

35

Literatura

[1] W3ScHooLs, Python Lists, https://www.w3schools.com/python/python_lists.asp,
sijeCanj 2023.

[2] W3ScHooLs, Python — Global Variables,
https://www.w3schools.com/python/python_variables_global.asp, sijecanj 2023.

[3] Wa3ScHooLs, Python Functions,
https://www.w3schools.com/python/python_functions.asp, sije¢anj 2023.

[4] Python, re — Regial expression operations, https://docs.python.org/3/library/re.html,
sijecanj 2023.

[5] Regex Pal, Regex tester, https://www.regexpal.com/, sijecanj 2023.

[6] GeeksForGeeks, Creating Tables with PrettyTable Library — Python,
https://www.geeksforgeeks.org/creating-tables-with-prettytable-library-python/,
sijeCanj, 2023.

[7] Replit, How to Use Termcolor In Python, https://replit.com/talk/learn/How-to-Use-
Termcolor-In-Python/24684, sijacanj 2023.

[8] Csatlas, Python 3: Import Another Python File as a Module,
https://csatlas.com/python-import-file-module/, sije¢anj 2023.

[9] Wikipedia, Njemacki standardni jezik,
https://hr.wikipedia.org/wiki/Njema%C4%8Dki_standardni_jezik, sije¢anj 2023.

[10] Wikipedia, German verbs, https://en.wikipedia.org/wiki/German_verbs, sijecanj
2023.

[11] Intellecta, Njemacke slozenice — nisu tako strasne!, https://www.intellecta.hr/jezicne-
zanimljivosti/njemacke-slozenice/, sije¢anj 2023.

[12] Silbentrennung, sli¢na web aplikacija za rastavljanje na slogove,
https://www.silbentrennung24.de/, sije¢anj 2023.

[13] GitHub, JoelNiklaus CompoundSplit,
https://github.com/JoelNiklaus/CompoundSplit, sije¢anj 2023.

[14] GitHub, repodiac german_compounder_splitter,
https://github.com/repodiac/german_compound_splitter, sije¢anj 2023.

36

https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_variables_global.asp
https://www.w3schools.com/python/python_functions.asp
https://docs.python.org/3/library/re.html
https://www.regexpal.com/
https://www.geeksforgeeks.org/creating-tables-with-prettytable-library-python/
https://replit.com/talk/learn/How-to-Use-Termcolor-In-Python/24684
https://replit.com/talk/learn/How-to-Use-Termcolor-In-Python/24684
https://csatlas.com/python-import-file-module/
https://hr.wikipedia.org/wiki/Njema%C4%8Dki_standardni_jezik
https://en.wikipedia.org/wiki/German_verbs
https://www.intellecta.hr/jezicne-zanimljivosti/njemacke-slozenice/
https://www.intellecta.hr/jezicne-zanimljivosti/njemacke-slozenice/
https://www.silbentrennung24.de/
https://github.com/JoelNiklaus/CompoundSplit
https://github.com/repodiac/german_compound_splitter

Prilog: programski kod

URL na GitHub repozitorij:

https://github.com/ajanach/word syllables

37

https://github.com/ajanach/word_syllables

