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Abstract 

This thesis provides a comprehensive comparison of Kubernetes orchestration tools, 

specifically focusing on Azure Kubernetes Service (AKS) and K3S, to determine their 

suitability for orchestrating a medium complexity microservices application, exemplified by 

the "Online Boutique" application, which consists of 15 containers. The analysis compares 

one tool supporting on-premises environments (K3S) with another designed for cloud 

environments (AKS), emphasizing performance, cost-effectiveness, management 

complexity, and scalability. 

The quantitative analysis was conducted on infrastructure with identical resources, including 

CPU, memory, and storage, to ensure a fair comparison. AKS demonstrated significant cost 

advantages over a five-year period, largely due to its integration with the Azure ecosystem, 

which optimizes resource allocation and reduces operational overhead. However, K3S 

consistently outperformed AKS in key performance metrics, including CPU speed, memory 

transfer rate, and request-handling capabilities. These performance differences are partly due 

to the additional load created by the hypervisor and the extra cloud-specific services running 

within the AKS cluster. 

The qualitative analysis identified differences in implementation, configuration, ease of 

deployment, integration, and management. AKS excels in cloud environments due to its 

automated management and seamless integration with Azure, making it suitable for 

organizations looking to minimize operational overhead. In contrast, K3S offers greater 

flexibility and customization, particularly for on-premises deployments or scenarios 

requiring specific configurations. Additionally, K3S is suitable for organizations with 

existing on-premises infrastructure. 

Keywords: Kubernetes, Azure Kubernetes Service, AKS, K3S, microservices, cloud 

computing, on-premises, container orchestration, performance analysis, cost-effectiveness. 

 

 

 

 

 



3 

Usporedba sustava za orkestraciju mikrouslužnih 

aplikacija 

Sažetak 

Ovaj diplomski rad pruža sveobuhvatnu usporedbu Kubernetes alata za orkestraciju, s 

posebnim naglaskom na Azure Kubernetes Service (AKS) i K3S, u svrhu utvrđivanja 

njihove prikladnosti za orkestriranje aplikacija srednje složenosti, pri čemu je korištena 

"Online Boutique" aplikacija koja se sastoji od 15 kontejnera. Analiza uspoređuje jedan alat 

koji podržava lokalna okruženja (K3S) s drugim dizajniranim za okruženja u oblaku (AKS), 

s naglaskom na performanse, isplativost, složenost upravljanja i skalabilnost. 

Kvantiativna analiza provedena je na infrastrukturi s identičnim resursima, uključujući 

procesor, memoriju i pohranu, kako bi se osigurala pravedna usporedba. AKS je pokazao 

značajne prednosti u troškovima tijekom petogodišnjeg razdoblja, uglavnom zbog 

integracije s Azure ekosustavom, što optimizira alokaciju resursa i smanjuje operativno 

opterećenje. Međutim, K3S je u svim ključnim performansama nadmašio AKS, uključujući 

brzinu procesora, brzinu prijenosa memorije i sposobnost obrade zahtjeva. Ove razlike u 

performansama djelomično su uzrokovane dodatnim opterećenjem koje stvaraju hipervizor 

i dodatni servisi specifični za okruženje u oblaku unutar AKS klastera. 

Kvalitativna analiza identificirala je razlike u implementaciji, konfiguraciji, lakoći 

postavljanja, integraciji i upravljanju. AKS se ističe u okruženjima u oblaku zahvaljujući 

automatiziranom upravljanju i besprijekornoj integraciji s Azureom, čime je prikladan za 

organizacije koje žele minimizirati operativno opterećenje. Nasuprot tome, K3S nudi veću 

fleksibilnost i prilagodljivost, osobito za lokalne implementacije ili scenarije koji zahtijevaju 

specifične konfiguracije. Dodatno, K3S je prikladan za organizacije koje već imaju 

postojeću on-prem okruženje. 

Ključne riječi: Kubernetes, Azure Kubernetes Service, AKS, K3S, mikroservisi, 

računarstvo u oblaku, lokalno okruženje, orkestracija kontejnera, analiza performansi, 

isplativost. 
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1. Introduction 

The advent of microservices architecture has transformed the way modern applications are 

designed and deployed. Microservices offer exceptional flexibility and efficiency by breaking 

down applications into smaller, independent services that can be developed, deployed, and 

scaled individually. However, managing these microservices, especially at scale, introduces 

significant complexity. Orchestration tools like Azure Kubernetes Service (AKS) and K3S 

have emerged as vital technologies to address these challenges, providing robust solutions for 

deploying, scaling, and operating containerized applications [1]. 

This thesis aims to conduct a detailed comparison of various orchestration tools, specifically 

focusing on AKS and K3S. The comparison is grounded in a case study involving the 

orchestration of a microservices application of medium complexity. Strengths and weaknesses 

of each tool are identified in both on-premises and cloud infrastructure deployment 

environments by examining quantitative and qualitative aspects. The goal is to provide 

methodology for a comprehensive analysis that can guide organizations in selecting the most 

suitable orchestration platform for their specific needs. 

1.1. Background and Motivation 

The rapid advancement of technology has led to the widespread adoption of microservices 

architectures. These architectures offer significant benefits, such as scalability, maintainability, 

and agility. Unlike monolithic architectures, where all components are interdependent, 

microservices break down applications into smaller, independent services [2]. These services 

can be developed, deployed, and scaled individually, allowing for greater flexibility and faster 

iteration. This modular approach enables organizations to respond more quickly to changing 

business requirements and market demands. 

Containers have become essential for implementing microservices architectures. They provide 

a lightweight, portable, and consistent environment for running applications, regardless of the 

underlying infrastructure [3]. By encapsulating an application and its dependencies into a single 

package, containers ensure that microservices can be deployed and run reliably across different 

environments. This isolation enhances security and simplifies the process of scaling and 

managing applications. 
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However, managing these microservices efficiently poses substantial challenges. The 

complexity of orchestrating multiple services, ensuring their seamless interaction, and 

maintaining their health and performance can be daunting without the right tools and strategies. 

Orchestration tools have emerged as essential components for managing the deployment, 

scaling, and operation of containerized applications in distributed environments. These tools 

provide a framework for automating the deployment, scaling, and operation of application 

containers across clusters of hosts [3]. They offer built-in mechanisms for service discovery, 

load balancing, and automated rollouts and rollbacks. 

Microservices applications can be deployed in one of three environments: cloud, on-premises, 

or hybrid. Each environment presents unique challenges and opportunities for orchestration. 

Organizations are increasingly adopting cloud-native technologies to leverage the flexibility 

and scalability of cloud environments [1]. Cloud-native applications are designed to fully 

exploit the advantages of the cloud computing model, such as elastic scalability, resilience, and 

the ability to run applications in a highly distributed manner. 

Simultaneously, many enterprises maintain on-premises infrastructure to meet specific 

regulatory, performance, or cost requirements. Regulatory requirements may mandate that 

certain data must remain on-premises, while performance considerations may require low-

latency access to data and services. Cost constraints can also play a role, as maintaining on-

premises infrastructure may be more economical for certain workloads. 

To address these diverse requirements, a hybrid approach, combining on-premises and cloud 

environments, is often necessary. Hybrid deployments enable organizations to leverage the 

benefits of both environments, providing the flexibility to optimize resources, meet compliance 

requirements, and achieve cost efficiencies [4]. By seamlessly integrating on-premises systems 

with cloud services, hybrid strategies offer a robust solution for modern application deployment 

and management. 

Selecting an optimal orchestration tool that can effectively integrate with both on-premises and 

cloud environments is crucial. Such a tool must provide consistent management and operational 

capabilities across these environments, ensuring that microservices can be deployed and 

managed with the same ease and efficiency, regardless of where they run. This requires robust 

support for hybrid and multi-cloud deployments, including features such as unified monitoring 

and management, consistent security policies, and seamless workload portability. 
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Platforms like Azure Kubernetes Service (AKS) and K3S stand out among the appropriate 

orchestration tools due to their widespread adoption and comprehensive feature sets. AKS, a 

managed Kubernetes service by Microsoft Azure, offers integrated CI/CD, monitoring, and 

security features that simplify container management [5]. K3S, a lightweight Kubernetes 

distribution by Rancher Labs, is optimized for resource-constrained environments, making it 

ideal for edge computing and IoT applications [6]. 

This thesis is motivated by the need to provide a detailed and practical comparison of leading 

orchestration tools, facilitating informed decision-making for organizations looking to 

optimize their microservices management. We first identify the strengths and weaknesses of 

each tool in different deployment scenarios by analyzing the performance, cost-effectiveness, 

and qualitative features of AKS and K3S. Based on the comparison, we propose a formal 

process for selecting the most suitable orchestration platform that will enable organizations to 

achieve their operational and strategic objectives. 

1.2. Objectives of the Thesis 

This thesis aims to compare Azure Kubernetes Service (AKS) and K3S as orchestration tools 

through a case study of a medium complexity microservices application. The application itself 

comprises 15 microservices, each running individual pods within the Kubernetes Cluster. 

Additionally, 7 system services are deployed as a part of kube-prometheus-stack, providing 

essential monitoring and management capabilities. The findings from this thesis will promote 

best practices in managing cloud-native applications and provide valuable resources for 

practitioners and researchers alike. The specific objectives are as follows: 

Quantitative Comparison: 

To evaluate the performance and cost-effectiveness of at least two orchestration tools, focusing 

on Azure Kubernetes Service (AKS) and K3S, one supporting cloud environments deployment 

and the other supporting on-prem. To conduct measurements on infrastructure with identical 

resources, including the number of processors (vCPU), amount of memory (RAM), capacity, 

and type of system disk, as well as the number of clusters related to the control plane and 

worker nodes. To analyze performance metrics such as response time, throughput, and resource 

utilization to determine how each tool handles the orchestration of microservices. 
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Qualitative Comparison: 

To identify and analyze differences in implementation, configuration, ease of deployment, 

integrations, management, security, and other relevant features of the orchestration tools. To 

examine the setup and configuration processes, the user-friendliness of each tool, the 

integration capabilities with existing systems and services, and the security features they offer. 

Additionally, to explore available tools and techniques for monitoring performance and 

optimizing clusters to understand how each platform supports ongoing operations and 

maintenance. 

Support and Community: 

To compare the availability and quality of official support and the usefulness of related online 

communities for each orchestration tool. To evaluate the documentation, official support 

channels, and the strength and activity level of user communities. The goal is to understand 

how accessible and effective the support mechanisms are for each tool, and how community 

resources can aid in troubleshooting and optimizing the use of the orchestration platforms. 

Selection Process: 

To develop a formal process for selecting the optimal orchestration platform based on the 

measured data and the analysis of collected information. To design framework, i.e. a structured 

system for evaluating both quantitative and qualitative factors, which organizations can use to 

evaluate orchestration tools based on their specific needs and constraints. To provide an 

associated set of guidelines and recommendations to help organizations choose the most 

suitable orchestration tool for their microservices applications. 

1.3. Limitation 

While this study provides valuable insights into the performance and suitability of Azure 

Kubernetes Service (AKS) and K3S for orchestrating microservices, it is essential to consider 

the following limitations: 

• Application Specificity: The case study application is of medium complexity and the 

results may not be directly applicable to applications with significantly different 

complexity levels. Organizations with simpler or more complex applications might 

need to conduct additional evaluations to determine the best orchestration tool for their 

specific needs. 
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• Selected Orchestration Tools: This study focuses on AKS and K3S due to their 

widespread adoption and relevance. While OpenShift is mentioned for context, the 

practical part of this thesis does not cover it. Other orchestration tools, such as Google 

Kubernetes Engine (GKE) or Amazon Elastic Kubernetes Service (EKS), are also 

available but not included in this comparison. 

• Deployment Environment: The comparison is limited to the specified environments: 

on-premises and cloud. The study does not account for hybrid or multi-cloud 

deployments, which may have different requirements and challenges. 

• Resource Constraints: Measurements are conducted on infrastructure with identical 

resources, including the number of processors (vCPU), amount of memory (RAM), 

capacity and type of system disk, and the number of clusters related to the control plane 

and worker nodes. While this ensures a fair comparison, it may not represent all 

possible deployment scenarios or resource configurations. 

• Temporal Relevance: The rapidly evolving nature of technology means that the 

findings of this thesis may become outdated as new features and improvements are 

introduced to the orchestration tools. Regular updates and new releases from AKS and 

K3S could impact the relevance and accuracy of the results over time. 

1.4. Structure of the Thesis 

The following is an overview of the thesis structure: 

The first chapter introduces the topic of the thesis, providing background information and the 

motivation behind the study. It outlines the thesis's objectives, scope, and limitations and 

presents the overall structure. 

The second chapter provides the foundational knowledge necessary for understanding 

microservices architecture. It begins with an exploration of microservices, covering their 

definition, principles, benefits, and challenges. The chapter then delves into orchestration tools, 

offering an overview of their purpose, key features, and functions. Specific attention is given 

to Azure Kubernetes Service (AKS) and K3S as the selected orchestration tools. 

The third chapter describes the case study that serves as the basis for the comparison. This 

includes a detailed description of the microservices application, its architecture, and both its 

functional and non-functional requirements. The experimental setup is explained, covering 

infrastructure specifications, deployment scenarios, and the testing methodology. 
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The fourth chapter shifts the focus to the practical implementation and deployment of the 

microservices application using the selected orchestration tools. This includes a step-by-step 

guide on configuring and setting up Azure Kubernetes Service (AKS) and K3S, detailing the 

deployment processes, and addressing any challenges encountered along the way. 

The fifth chapter evaluates the performance and cost-effectiveness of the orchestration tools. 

Performance testing results are presented, followed by a detailed analysis of the performance 

metrics. The cost analysis includes the methodology for cost calculation and a comparative 

analysis of costs. Resource utilization, including CPU, memory, storage, and network 

performance, is also discussed. 

In the sixth chapter, a qualitative analysis examines differences in implementation and 

configuration, ease of deployment, integrations, management, and security features of the 

orchestration tools. Tools and techniques for monitoring and optimization are explored, and 

the quality of community support and documentation is assessed. 

The seventh chapter synthesizes the findings from the quantitative and qualitative analyses. It 

summarizes the strengths and weaknesses of each orchestration tool, offers recommendations 

for selecting an orchestration platform, and discusses the implications of the research findings 

for future work. 

The concluding chapter summarizes the entire thesis, highlighting key contributions and 

findings. 
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2. Theoretical Background 

This chapter provides a comprehensive theoretical background on microservices architecture, 

delving into its definition, principles, benefits, and challenges. It then explores orchestration 

tools, detailing their key features, functions, and importance in managing microservices. 

Finally, the chapter provides an in-depth overview of two selected orchestration tools: Azure 

Kubernetes Service (AKS) and K3S, highlighting their unique features, benefits, and suitable 

use cases.  

2.1. Microservices Architecture 

2.1.1. Definition and Principles 

Microservices architecture is a software design approach that decomposes an application into 

a collection of loosely coupled, independently deployable services [1]. Each service 

corresponds to a specific business capability and can be developed, deployed, and scaled 

independently. This modular approach is in sharp contrast to traditional monolithic 

architectures, where all functionalities are tightly interconnected in a single, large application 

[7]. 

Key Principles of Microservices Architecture [8]: 

1. Single Responsibility Principle: Each microservice should focus on a single piece of 

business functionality. This principle promotes a clear separation of concerns, making 

the system easier to understand, develop, and maintain. 

2. Independence: Services should be independently deployable and scalable. This 

independence allows for continuous delivery and deployment, enabling faster time-to-

market. 

3. Decentralized Data Management: Each service manages its own database or data 

storage, ensuring that services remain decoupled. This approach simplifies the data 

model and enhances data consistency within each service. 

4. Inter-Service Communication: Microservices communicate with each other via 

lightweight protocols such as HTTP/REST or messaging queues. This communication 

must be robust and reliable to ensure the smooth operation of the system. 

5. Automation through CI/CD: 

a. Continuous Integration (CI): This practice involves frequently merging code 

changes from multiple developers into a central repository, where automated 
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builds and tests are run. The primary goal of CI is to quicky detect and address 

bugs, improve software quality, and reduce the time it takes to validate and 

release new software updates. 

b. Continuous Deployment (CD): Extends CI by automatically deploying all 

code changes from the repository to the production environment after passing 

set tests. This means changes are automatically and reliably made live, 

providing a faster pathway to addressing user needs and improving the 

application. 

Significance of CI/CD in Microservices: 

CI/CD enables organizations to handle the inherent complexity of managing multiple 

microservices by automating the integration and deployment processes. This automation 

supports frequent updates and consistent system behaviour across different environments [9]. 

For microservices, where multiple services must work in concert yet be developed and scaled 

independently, CI/CD provides a systematic approach to rapid and reliable software delivery. 

This is crucial for maintaining system integrity and agility in the dynamic operational 

landscapes where microservices thrive [10]. 

Microservices are often deployed using containerization technologies such as Docker, which 

encapsulates a service and its dependencies in a container [2]. This encapsulation ensures 

consistent operation across various environments, further supported by CI/CD pipelines that 

automate the testing and deployment of these containers.  

Role of Containers in Microservices: 

Containers are a lightweight form of virtualization that encapsulate an application and its 

dependencies into a self-contained unit that runs consistently across any computing 

environment. This technology is pivotal for microservices architectures due to its ability to 

isolate software from its surroundings, thus ensuring that it works uniformly despite differences 

in infrastructure or location. 

In a microservices architecture, each service is deployed as a separate container, allowing 

individual services to run independently of others [3]. This independence is crucial for 

implementing the core principles of microservices such as agility, scalability, and resilience. 

• Consistency and Portability: Containers provide a consistent environment for 

applications from development through production. This portability simplifies the 
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deployment process across different computing environments, from a developer's local 

machine to the production servers. 

• Rapid Provisioning: Containers can be created and destroyed in seconds, providing 

the agility needed to deploy, scale, and terminate services swiftly according to demand. 

• Resource Efficiency: Unlike traditional virtual machines that each require a full 

operating system, containers share the host system’s kernel. This design significantly 

reduces overhead, making it possible to run more services on the same hardware. 

As the deployment of microservices scales, understanding and managing the lifecycle of the 

underlying cloud infrastructure becomes critical. By comprehensively addressing each phase 

of the lifecycle, organizations can ensure that their microservices architecture remains robust, 

efficient, and capable of meeting evolving demands. The following section details the lifecycle 

of cloud infrastructure within the context of microservices deployment. 

Advantages of Cloud Infrastructure [3]: 

1. Agility: Cloud infrastructure enables rapid deployment and scaling of services, 

allowing organizations to respond quickly to changing business needs. 

2. Cost-Efficiency: The pay-as-you-go model of cloud services minimizes upfront capital 

expenses and aligns costs with actual usage, promoting financial efficiency. 

3. Resilience: Built-in redundancy and geographic distribution of cloud resources 

enhance the reliability and availability of applications, minimizing downtime and 

ensuring business continuity. 

Lifecycle of Cloud Infrastructure [11]: 

The lifecycle of cloud infrastructure in a microservices context involves several critical stages, 

each essential for maintaining an efficient, reliable, and scalable system: 

1. Planning and Design: This initial stage involves defining the architecture, selecting 

appropriate technologies (e.g., Kubernetes for orchestration, Docker for containers), 

and establishing best practices for service design. 

2. Development: During development, each microservice is built to conform to the 

defined architecture and principles. Continuous Integration ensures that new code is 

automatically tested and integrated into the existing codebase, reducing integration 

issues. 



10 

3. Deployment: Services are deployed using Continuous Deployment pipelines, allowing 

for automated releases to production environments. This stage leverages orchestration 

tools to manage service distribution across nodes, ensuring high availability. 

4. Monitoring and Scaling: Once deployed, services are continuously monitored for 

performance and reliability using tools like Prometheus and Grafana. These insights 

drive automated scaling actions, ensuring resources are allocated efficiently based on 

demand. 

5. Maintenance and Optimization: Regular updates and optimizations are performed to 

improve performance, patch vulnerabilities, and add new features. This stage is critical 

for maintaining system health and adapting to changing user needs. 

6. Retirement: As services become obsolete or are replaced by newer solutions, they are 

systematically decommissioned to free up resources and reduce complexity. 

Integrating these stages into lifecycle management ensures that cloud infrastructure can adapt 

to and support the evolving demands of modern applications. 

2.1.2. Benefits and Challenges of Microservices Architecture 

Understanding the benefits and challenges of microservices architecture is essential for 

organizations considering or currently implementing microservices architecture. This 

understanding helps in making informed decisions and optimizing their architecture for better 

performance and reliability. The Table 1 below summarizes the key benefits and challenges 

associated with microservices architecture. 

Table 1. Summary of Benefits and Challenges in Microservices Architecture. Source [2]. 

Category Aspect Description 

Benefits Scalability Microservices allow each service to be scaled independently, 

optimizing resource utilization. This flexibility is particularly 

valuable in handling varying loads and improving application 

performance. 

Flexibility Developers can use different technologies and frameworks for 

different services, depending on what is best suited for the task. 

This polyglot approach enables teams to leverage the best tools 

for each job. 

Resilience Fault isolation is improved as failures in one service do not 

necessarily affect others. This resilience enhances the overall 

availability and reliability of the application. 

Faster 

Deployment 

Teams can deploy services independently, leading to more 

frequent and faster updates. This agility is crucial for 

responding to changing business requirements and market 

conditions. 

Better 

Organization 

Microservices align with modern DevOps practices and 

encourage a more agile and collaborative approach to software 



11 

development. This alignment fosters a culture of continuous 

improvement and innovation. 

Challenges Complexity Managing numerous services can become complex, 

particularly in terms of deployment, monitoring, and 

maintenance. This complexity requires sophisticated tooling 

and robust practices to handle effectively. 

Inter-Service 

Communication 

Ensuring reliable communication between services can be 

challenging, especially when network issues arise. 

Implementing robust communication patterns and handling 

failures gracefully are critical to maintaining system stability. 

Data 

Management 

Maintaining consistency across decentralized databases can be 

difficult. Techniques such as eventual consistency and 

distributed transactions are often necessary but add complexity. 

Deployment 

Overhead 

Setting up and managing CI/CD pipelines for multiple services 

requires significant effort. Automation and orchestration tools 

are essential to streamline these processes and reduce manual 

intervention. 

Latency Cross-service communication can introduce latency, impacting 

performance. Optimizing communication paths and minimizing 

data transfer can help mitigate these effects. 

2.2. Kubernetes - Orchestration Tool 

2.2.1. Orchestration Tools in General 

This chapter explores what orchestration tools are, their purposes, and the details of several 

prominent orchestration tools used in managing microservices.  

Orchestration tools are crucial for the management of microservices architectures, as they 

provide a software platform to automate the deployment, scaling, and operation of 

containerized applications. These tools ensure that services run smoothly, remain highly 

available, and dynamically scale based on demand. By automating and coordinating the 

processes involved, orchestration tools facilitate the efficient operation of complex applications 

composed of multiple, interdependent services. 

Key Features and Functions of Kubernetes 

Table 2 summarizes the key features and functions of Kubernetes, highlighting how they 

contribute to the effective orchestration and management of containerized applications: 

Table 2. Summary of Key Features and Functions in Orchestration Tools. Source [3]. 

Category Feature/Function Description 

Key 

Features  

Declarative 

Configuration 

Users define the desired state of the system using 

configuration files. The orchestration tool then ensures the 

system matches this state. This approach simplifies 

management and reduces errors. 

Self-Healing Orchestration tools automatically replace failed containers 

and ensure that the desired number of instances is always 
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running. Self-healing improves the resilience and availability 

of applications. 

Rolling Updates and 

Rollbacks 

These tools facilitate seamless updates by gradually replacing 

old versions with new ones. They also allow rolling back to 

previous versions if issues are detected, minimizing 

downtime. 

Horizontal Scaling Orchestration tools automatically adjust the number of 

running instances of a service based on demand. This 

capability helps maintain performance and handle varying 

loads. 

Persistent Storage Managing storage resources and ensuring data persistence in 

case of container restarts. Persistent storage solutions enable 

applications to retain state and data integrity. 

Functions  Deployment Orchestration tools automate the deployment of applications, 

ensuring containers are launched with the correct 

configurations. This automation reduces manual effort and 

increases consistency. 

Load Balancing Distributing incoming traffic across multiple instances of a 

service to ensure high availability and reliability. 

Management Orchestration tools provide a centralized platform for 

managing all aspects of containerized applications, including 

configuration, storage, and networking. Centralized 

management simplifies operations and enhances control. 

Resource 

Management 

Efficiently allocating resources such as CPU and memory to 

different services based on their needs. 

Monitoring Continuous monitoring of the health and performance of 

services, with alerts and insights, helps maintain optimal 

operation. Monitoring tools enable proactive issue resolution 

and performance optimization. 

Security Enforcing security policies and best practices to protect 

applications and data is a key function of orchestration tools. 

Security features include encryption, access control, and 

network segmentation. 

In Table 3 are listed key use cases for Kubernetes: managing complex applications, supporting 

modern development practices, and handling large-scale data processing. 

Table 3. Use Cases for Kubernetes 

Enterprise Applications Large enterprises use Kubernetes to manage complex, multi-

tier applications. Its scalability and resilience are crucial for 

maintaining the performance and availability of business-

critical applications. 

Cloud-Native Applications Kubernetes is ideal for developing and deploying cloud-

native applications that leverage microservices architectures. 

It provides the tools needed to manage the dynamic nature of 

these applications. 

DevOps and Continuous 

Integration/Continuous 

Deployment (CI/CD) 

Kubernetes streamlines the CI/CD pipeline by automating the 

deployment and scaling of applications. It integrates well 

with DevOps tools, enabling rapid development and 

deployment cycles. 

Hybrid and Multi-Cloud 

Deployments 

Kubernetes supports hybrid and multi-cloud environments, 

allowing organizations to deploy applications across on-

premises and cloud infrastructures. This flexibility helps 



13 

avoid vendor lock-in and enhances disaster recovery 

capabilities. 

Big Data and Machine Learning Kubernetes is used to manage big data and machine learning 

workloads, providing the scalability and resource 

management needed for processing large datasets and 

training complex models. 

Table 4 presents key orchestration tools for microservices: 

Table 4. Overview of Key Orchestration Tools for Microservices 

Orchestration 

Tool 

Description Use Case Created By 

Kubernetes Developed in 2008 by Google, 

Kubernetes is an open-source container 

orchestration tool known for its vast 

library of functionalities and automated 

deployment features. It was handed 

over to the Cloud Native Computing 

Foundation in 2014. 

Large-scale enterprise 

applications, cloud-

native applications, 

multi-cloud and hybrid 

cloud environments. 

Google 

K3S Developed by Rancher Labs, K3S is a 

lightweight Kubernetes distribution 

designed for easy installation and low 

resource use, making it ideal for edge, 

IoT, and low-capacity environments. 

Edge computing, IoT 

deployments, small to 

medium enterprises, 

and environments with 

limited resources. 

Rancher 

Labs 

OpenShift OpenShift by Red Hat is an enterprise-

grade hybrid platform that expands 

Kubernetes functionalities. It offers 

both Container-as-a-Service (CaaS) and 

Platform-as-a-Service (PaaS) models, 

with a small learning curve and support 

for creating databases and application 

services. 

Enterprise 

environments, hybrid 

cloud deployments, and 

application services 

development. 

Red Hat 

Nomad Developed by HashiCorp, Nomad 

supports container and non-container 

workloads, integrating with other 

HashiCorp tools like Consul, Vault, and 

Terraform. It supports macOS, 

Windows, and Linux, and offers GPU 

support, scalability, and multi-cloud 

deployments. 

Mixed workload 

environments, 

organizations using 

HashiCorp tools, and 

highly dynamic, 

scalable applications. 

HashiCorp 

Docker Swarm Docker Swarm is Docker’s native 

support for container orchestration, 

providing portable and agile 

applications with seamless load 

balancing and high service availability 

in a distributed environment. 

Small to medium-sized 

deployments, 

development and 

testing environments, 

Docker-native 

applications. 

Docker, Inc. 

Apache Mesos Apache Mesos is an open-source 

cluster management tool that performs 

container orchestration and allows 

resource sharing and allocation across 

distributed frameworks, suitable for 

large-scale clustered environments. 

Large-scale data 

processing, high-

performance 

computing, multi-

framework 

environments. 

Apache 

Software 

Foundation 

Helios Developed by Spotify, Helios is a tool 

for orchestrating Docker containers, 

Managing Docker 

containers, fitting into 

Spotify 

https://kubernetes.io/
https://k3s.io/
https://www.openshift.com/
https://www.nomadproject.io/
https://dockerswarm.rocks/swarm-or-kubernetes/
http://mesos.apache.org/
https://github.com/spotify/helios
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known for its practicality and ability to 

fit seamlessly with most developer 

workflows, supporting single-node and 

multi-node instances. 

existing developer 

workflows, single-node 

and multi-node 

deployments. 

2.2.2. Overview of the Kubernetes Orchestration Tool 

Kubernetes is an open-source platform designed to automate the deployment, scaling, and 

operation of containerized applications. Originally developed by Google in 2008 Table 4, 

Kubernetes has become the industry standard for container orchestration. In 2014, Google 

handed over Kubernetes to the Cloud Native Computing Foundation (CNCF), ensuring its 

continued development and widespread adoption. [1] 

Kubernetes operates using a cluster-based architecture composed of distributed physical or 

virtual servers, known as nodes. These nodes are categorized into two main types: master and 

worker nodes, which together form a cluster. The components installed on a node determine 

its functionality and identify it as either a master or worker node. 

Cluster architecture 

A Kubernetes cluster consists of a control plane and one or more worker nodes. The control 

plane is responsible for managing the overall state of the cluster, while the worker nodes 

execute the tasks assigned by the control plane. The architecture of a Kubernetes cluster is 

designed to ensure fault-tolerance and high availability, with the control plane managing the 

worker nodes and the pods they host. 

Control plane components: 

• “API Server: The API server (kube-apiserver) is the core component of the Kubernetes 

control plane that exposes the Kubernetes API. It acts as the front end for the 

Kubernetes control plane, handling all RESTful requests and updates to the cluster. For 

example, when you deploy an application on Kubernetes, the API server processes the 

request and updates the cluster state accordingly. 

• etcd: A consistent and highly available key-value store that serves as the primary data 

storage mechanism for all cluster configuration data and state. This component is 

critical for maintaining the cluster's state and ensuring that configuration data is reliably 

stored and accessible. In a production environment, etcd is typically configured with 

high availability, often running as a distributed system across multiple nodes. 

• Scheduler: The scheduler (kube-scheduler) is responsible for assigning workloads to 

nodes based on resource availability, performance requirements, and other constraints. 
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It ensures that pods are efficiently distributed across the nodes in the cluster. For 

instance, if one node is under heavy load, the scheduler will allocate new pods to a less 

utilized node to balance the workload. 

• Controller Manager: The controller manager (kube-controller-manager) runs various 

controllers that regulate the state of the cluster. These controllers include the node 

controller, which monitors node health, and the deployment controller, which manages 

application updates and scaling. The deployment controller, for example, ensures that 

the correct number of pod replicas are always running.” [4] 

• Cloud Controller Manager: Specific to cloud deployments, the cloud controller 

manager integrates the cluster with cloud provider APIs, managing cloud-specific 

resources such as load balancers, storage, and networking. [5] This component is 

essential for leveraging cloud-specific features, such as automatically provisioning a 

cloud load balancer when a service of LoadBalancer type is created. 

“Worker node components: 

• Kubelet: The kubelet is an agent running on each worker node that ensures containers 

are running in a pod. It monitors the state of the containers and intervenes to maintain 

the desired state as specified by the control plane. For example, if a container in a pod 

crashes, the kubelet will automatically restart it. 

• Container Runtime: The container runtime, such as Docker or containerd, is 

responsible for running the containers within pods. It abstracts system-level operations, 

allowing Kubernetes to manage containers uniformly across different environments. 

The container runtime ensures that containers are isolated and have the necessary 

resources to run. 

• Kube-proxy: Kube-proxy is a network proxy that runs on each node, maintaining 

network rules and managing communication between services in the cluster. It ensures 

that network traffic is properly routed to and from pods. For example, kube-proxy helps 

in load balancing network traffic to different pod replicas providing the same service.” 

[4]. 
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Figure 1. The Components of a Kubernetes Cluster. Source: [4]. 

“Kubernetes resources play a vital role in defining and managing the state and behaviour of 

applications within a cluster. These resources presented in Figure 1. The Components of a 

Kubernetes Cluster. Source: .ensure that applications are efficiently deployed, scaled, and 

maintained across the cluster. 

• Pods: A pod is the smallest deployable unit in Kubernetes, encapsulating one or more 

containers that share the same network namespace and storage. Pods are fundamental 

to Kubernetes applications, allowing for easy scaling and management. They are 

scheduled on worker nodes to ensure efficient resource utilization. For instance, a web 

application might consist of multiple pods, each hosting a web server container. 

• Controllers: Controllers in Kubernetes maintain the desired state of the cluster by 

managing pods and other resources. They automate essential tasks such as deployment, 

scaling, and self-healing. Examples include: 

o Deployments: These manage the rollout of new application versions, ensuring 

that a specified number of replicas are always running. Deployments facilitate 

updates and rollbacks, enhancing application management. 

o StatefulSets: Designed for stateful applications, StatefulSets ensure that each 

pod has a unique identity and stable storage, making them ideal for databases 

and other applications requiring consistent data access. 

o DaemonSets: These ensure that a copy of a pod runs on all or specific nodes in 

the cluster, typically used for services like logging and monitoring which need 

to be present on every node. 
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• Services: Services define a logical set of pods and a policy for accessing them, 

providing a stable network endpoint for communication between components. Services 

also facilitate load balancing, ensuring that traffic is evenly distributed across pods. For 

example, a service might expose a set of backend pods to external traffic, distributing 

the load evenly across all pods. 

• Ingress: Ingress resources manage external access to services within a cluster, offering 

advanced load balancing, SSL termination, and name-based virtual hosting. Ingress 

enhances security and provides a unified entry point for accessing applications. A 

common use case for ingress is to route HTTP and HTTPS traffic to different services 

based on the request URL.” [4]. 

 

Figure 2. Kubernetes Cluster Architecture. Source: [4]. 

Deploying Kubernetes involves setting up the master and worker nodes, configuring networking, and ensuring 

that the components can communicate securely and efficiently. Figure 2 illustrates the architecture of a 

Kubernetes cluster, showing the relationship between the master and worker nodes, and how they handle 

workloads, networking, and communication between components. In  

 

Table 5 are listed the primary methods for deploying Kubernetes: 
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Table 5. Deployment Methods for Kubernetes 

Deployment 

Method 

Description Tools/Services 

On-Premises 

Deployment 

Kubernetes can be deployed on physical or 

virtual machines in an on-premises data 

center. This method involves setting up and 

managing clusters locally. 

Kubeadm, K3S, OpenShift  

Cloud-Based 

Deployment 

Many cloud providers offer managed 

Kubernetes services that simplify deployment 

and management. These services handle 

much of the infrastructure setup and 

maintenance. 

Google Kubernetes Engine 

(GKE), Azure Kubernetes 

Service (AKS), Amazon Elastic 

Kubernetes Service (EKS) 

Hybrid 

Deployment 

Organizations can deploy Kubernetes in a 

hybrid environment, combining on-premises 

and cloud resources. This approach offers 

flexibility, scalability, and better disaster 

recovery capabilities. 

OpenShift, K3S 

Local 

Development 

For development and testing purposes, 

Kubernetes can be deployed locally using 

tools that create and manage Kubernetes 

clusters on local machines. 

Minikube, Kind (Kubernetes IN 

Docker), K3D 

2.3. Overview of Selected Orchestration Tools 

In the rapidly evolving field of container orchestration, two tools stand out: Azure Kubernetes 

Service (AKS) [12] and K3S [6]. They both simplify the management of containerized 

applications, but each is tailored to different needs. 

Azure Kubernetes Service (AKS) is a fully managed service from Microsoft, which is built on 

the open-source Kubernetes system. It provides a robust and scalable solution for enterprise 

needs. 

K3S is a lightweight Kubernetes distribution developed by Rancher Labs That is optimized for 

resource-constrained environments and IoT applications. It offers a streamlined and efficient 

Kubernetes experience. 

This section provides an overview of AKS and K3S and sets the stage for a detailed 

examination of their features, benefits, and use cases. 

2.3.1. Azure Kubernetes Service (AKS) 

Azure Kubernetes Service (AKS) is a managed container orchestration service that simplifies 

the deployment, scaling, and operation of containerized applications [5]. By automating 

essential infrastructure tasks such as updates and scaling, AKS allows development teams to 

concentrate on application development. 
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Key Features and Advantages of AKS [5]: 

• Managed Infrastructure: AKS automates management tasks, such as updates and 

scaling, reducing the operational overhead on DevOps engineers and improving 

efficiency. 

• Integrated Security: AKS offers enhanced security by integrating with Azure’s 

security services, providing robust identity management and access controls to protect 

sensitive data. 

• Cost-Effective Scalability: AKS supports a flexible pricing model that allows 

businesses to optimize costs based on resource usage. Its scalability features enable 

applications to efficiently manage varying loads, making it suitable for dynamic 

applications. 

• High Availability and Reliability: AKS ensures high availability with features like 

automated node health monitoring and self-healing capabilities, maintaining consistent 

performance and uptime. 

• Hybrid and Multi-Cloud Flexibility: AKS supports deployments across hybrid and 

multi-cloud environments, offering businesses flexibility and preventing vendor lock-

in. 

Setting up AKS involves the following steps [12]: 

1. Create an AKS Cluster: Use the Azure portal, CLI, or Azure Resource Manager 

templates to create a new Kubernetes cluster. 

2. Configure the Cluster: Set up node count, networking options, and other 

configurations. 

3. Deploy Applications: Use kubectl to deploy containerized applications to the cluster. 

4. Scale and Manage: Utilize AKS features for scaling and managing applications, such 

as autoscaling and monitoring tools. 

2.3.2. K3S 

K3S is a lightweight Kubernetes distribution optimized for resource-constrained environments 

and IoT applications [6]. It simplifies the Kubernetes setup to offer a streamlined experience 

while ensuring compatibility with the broader Kubernetes ecosystem. DevOps engineers 

manage their entire cluster, including control plane nodes, and are responsible for updates, 

patches, and maintenance. This level of control allows flexibility but can introduce complexity, 
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especially in larger deployments. Managing multiple clusters or complex infrastructure might 

require advanced skills and additional tools. 

K3S provides a production-ready Kubernetes environment with minimal resource usage, 

making it ideal for edge computing and scenarios where resources are limited. It maintains 

essential Kubernetes functionalities but without the typical overhead of traditional 

distributions. 

Some of the key use-cases where K3S performs well [6]: 

• Edge Computing: K3S is ideal for managing applications on edge devices, where 

resources are limited, and simplicity is crucial for efficient operations. 

• IoT Deployments: K3S is well-suited for efficiently managing fleets of IoT devices, 

offering streamlined operations with minimal resource consumption. Its ability to run 

on ARM architecture means it can be deployed directly onto a wide range of IoT 

devices. 

• Development and Testing: K3S provides a lightweight environment that is perfect for 

developers to create and test Kubernetes applications. 

• Small-Scale Deployments: K3S offers simplicity and efficiency, making it particularly 

beneficial for organizations with limited resources. 

• Hybrid Deployments: K3S is also capable of being used in hybrid environments, 

effectively combining resources from edge devices and cloud setups for integrated 

operations. 

K3S integrates with a wide range of DevOps tools to enhance its functionality and streamline 

development workflows. It supports Kubernetes package management, allowing developers to 

easily manage and deploy applications using pre-configured charts. K3S is also compatible 

with various continuous integration and continuous deployment (CI/CD) platforms, enabling 

automated pipelines that build, test, and deploy applications directly to K3S clusters. For 

monitoring and observability, K3S works with tools that provide insights into application 

performance and health. Additionally, it is well-suited for integration with configuration 

management systems, which automate the provisioning and management of K3S clusters. This 

flexibility makes K3S a versatile platform that aligns well with modern DevOps practices, 

supporting a comprehensive toolchain for efficient software lifecycle management. 

Reasons to choose K3S include its simplicity, as it offers a straightforward installation process 

and minimal dependencies that make it easy to set up and manage. Additionally, it features a 
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reduced binary size and low resource requirements. K3S also simplifies storage management 

by supporting local storage without the need for a dedicated backend. This makes it particularly 

efficient and allows for rapid deployment and scaling across various environments. 

Initiating a K3S deployment involves the following steps: 

1. Install K3S: Execute the installation script on the target machine to automatically set 

up and configure K3S. During installation, define the roles of each node, setting up 

control plane and agent nodes as needed, with customizable options available via 

environment variables for specific requirements like network plugins or Kubernetes 

versions. 

2. Configure Settings: After installation, adjust additional settings such as network 

policies and storage options to tailor the cluster to specific operational needs. 

3. Deploy Applications: Use kubectl to deploy containerized applications using YAML 

files that define the necessary configurations for images, replicas, and network settings. 

4. Manage and Scale: Employ K3S’s tools to monitor, manage, and dynamically scale 

applications according to demand, ensuring efficient performance and resource 

utilization. 
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3. Case Study Design 

This chapter outlines the design of the case study for evaluating Azure Kubernetes Service 

(AKS) and K3S using the "microservices-demo" application developed by Google, also known 

as “Online Boutique" [13]. It includes a detailed description of the microservices application 

used for the evaluation, the experimental setup, and the specific configurations for both AKS 

and K3S deployments. Additionally, this chapter will explain the functional and non-functional 

requirements of the application, the infrastructure specifications, the deployment environment, 

and the monitoring setup. 

3.1. Description of the Microservices Application 

3.1.1. Application Architecture 

“The “Online Boutique” is a cloud-native microservices demo application showcasing a 

modern application architecture. It consists of an e-commerce website where users can browse 

items, add them to the cart, and purchase them. The application is designed to demonstrate best 

practices for running microservices on Kubernetes. 

The “Online Boutique” application is built using a collection of microservices, each designed 

to perform specific functions while working together to create a seamless e-commerce 

experience: 

1. Frontend: This is the web-based user interface where customers can browse items, add 

them to their cart, and proceed to checkout. There is no login or signup; a session ID is 

generated automatically for all users. 

2. Product Catalog Service: This service manages the store's product inventory. It 

provides a list of products from a JSON file, allows users to search for products, and 

retrieve details about individual items. 

3. Cart Service: Responsible for managing the user's shopping cart. It stores items in the 

cart using Redis and retrieves them as needed. 

4. Checkout Service: This service handles the entire checkout process. It retrieves the 

user’s cart, prepares the order, and coordinates payment, shipping, and email 

notifications. 

5. Payment Service: This service processes payments. It charges the provided credit card 

information (mocked) with the specified amount and returns a transaction ID. 

https://github.com/GoogleCloudPlatform/microservices-demo/tree/main
https://github.com/GoogleCloudPlatform/microservices-demo/tree/main
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6. Shipping Service: Manages the shipping of purchased items. It provides shipping cost 

estimates based on the items in the cart and ships items to the given address (mocked). 

7. Ad Service: Displays advertisements to users. It delivers text ads based on the provided 

context words. 

8. Currency Service: Offers currency conversion rates, converting amounts from one 

currency to another using real-time data fetched from the European Central Bank. This 

service handles the highest number of queries per second. 

9. Recommendation Service: Suggests products to users based on the contents of their 

cart, enhancing the shopping experience with personalized recommendations. 

10. Email Service: Sends order confirmation emails to users (mocked), ensuring they 

receive notification about their purchases. 

11. Load Generator: Simulates user traffic for testing purposes, continuously sending 

requests to mimic realistic user shopping behaviors on the frontend. 

As shown in Figure 3, the “microservices-demo” interconnection of elements microservices 

illustrates the architecture, demonstrating how different microservices interact and 

communicate within the system.” [13] 

 

Figure 3. The "microservices-demo" interconnection of microservices. Source: [13]. 
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Technology Stack for the 'Online Boutique' Application: The Online Boutique application 

leverages a diverse and robust technology stack to deliver a cloud-native, microservices-based 

architecture. This stack includes multiple programming languages, containerization 

technologies, orchestration, messaging protocols, and monitoring solutions to ensure high 

availability, scalability, and efficient communication between services. 

• Programming Languages: Various, including Go, Java, Node.js, Python, C#, 

• Databases: Redis for caching, 

• Containerization: Docker for packaging microservices, 

• Orchestration: Kubernetes for managing containerized applications, 

• Messaging Protocols: HTTP for REST APIs, gRPC for internal service 

communication, 

• Monitoring: Prometheus and Grafana for system monitoring and visualization. 

3.1.2. Functional and Non-functional Requirements 

Functional Requirements 

The functional requirements of the “Online Boutique” application are inherently described in 

the Application Architecture section, where each service is responsible for specific application 

functionalities. 

Non-Functional Requirements and SLOs 

The system's non-functional requirements set expectations related to efficiency, reliability 

scalability and other considerations. These requirements are expressed as Service Level 

Objectives (SLOs) to provide clear, measurable goals for the system's operation: 

1. Scalability: 

a. Objective: The platform must be scalable to handle increasing loads by 

accommodating up to 500 concurrent users (as demonstrated in K6 testing). 

b. SLO Target: Maintain consistent performance metrics, with no more than 5% 

increase in average response time when scaling from 250 to 500 users. 

c. Status: Achieved for both AKS and K3S, as both platforms demonstrated 

scalability and high request throughput under test conditions. 
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2. Performance: 

a. Objective: To achieve high throughput for data processing tasks in services like 

Currency Conversion and Shipping Cost Estimates while ensuring the average 

response times for user interactions remain under 100 milliseconds. 

b. SLO Target: To maintain throughput of at least 100 requests per second with 

response times not exceeding 100 ms for 99% of requests. 

c. Status: Partially achieved, as K3S meets these targets; however, AKS requires 

optimization to reduce request failures and improve response times. 

3. Reliability: 

a. Objective: To ensure system robustness and fault tolerance to achieve 99.9% 

uptime. 

b. SLO Target: To limit system downtime to less than 43 minutes per month, with 

rapid recovery from any faults. 

c. Status: To be validated through long-term monitoring, as reliability cannot be 

fully assessed within the scope of this thesis. Continuous operation and real-

world testing are required to confirm these targets. 

4. Portability: 

a. Objective: The system should be deployable across various environments 

without significant modifications. 

b. SLO Target: To achieve deployment across different Kubernetes clusters (e.g., 

AKS and K3S) within 30 minutes using the same configuration files. 

c. Status: Achieved, as the application was successfully deployed on both AKS 

and K3S with consistent configurations. 

5. Efficiency: 

a. Objective: Specifies the goal of keeping CPU and memory usage below 75% 

under normal operation to prevent overuse and manage costs effectively.   

b. SLO Target: Clearly states that the target is to maintain average CPU and 

memory usage below 75% for both AKS and K3S during benchmark tests. 

c. Status: Achieved for K3S, as demonstrated by Sysbench results showing 

efficient resource use; AKS may need further tuning. 

6. Scalability of Monitoring: 

a. Objective: To ensure monitoring systems scale with platform growth, providing 

real-time insights into performance metrics. 
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b. SLO Target: To enable monitoring for 100% of deployed services with less than 

1% performance overhead on system resources. 

c. Status: Achieved, with Grafana and Prometheus providing comprehensive 

monitoring across both AKS and K3S. 

Non-functional requirements that are beyond the scope of this thesis: 

1. Security: Implementing robust security measures, including encrypted 

communications, role-based access control, and regular security assessments. 

2. Maintainability: Ensuring the system is easy to maintain, with clear documentation, 

modular components, and automated deployment pipelines. 

3. Compliance: Adhering to industry standards and regulations, including data privacy 

laws and cybersecurity guidelines.  

3.2. Experimental Setup 

This section outlines how the “Online Boutique” microservices application is deployed and 

tested using Azure Kubernetes Service (AKS) and K3S. It includes infrastructure 

specifications, deployment scenarios, and testing methodology. 

3.2.1. Infrastructure Specifications 

The testing infrastructure for AKS is provided in the cloud environment and runs on the latest 

Ubuntu OS, while the infrastructure for K3S is provided on-premises and runs on the Rocky 

Linux distribution. From the user perspective, the frontend service in both environments is 

accessible via IP addresses over the HTTP port. 

 Details about each infrastructure used for testing are provided below. 

Cloud Environment (AKS) 

It utilizes virtual machines provided by Microsoft Azure for AKS. The cluster SKU for worker 

nodes is Standard_A2_v2 with 2 vCPUs and 4GB RAM per virtual machine (VM) as shown 

in Table 6. There is one node pool with a count of two nodes. The OS disk size is 50GB. AKS 

is deployed using Terraform [14] to automate and manage the infrastructure setup. 
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Table 6. Specifications for Each Worker Node in Azure Kubernetes Service 

Component Specification 

Cluster SKU Standard_A2_v2 

vCPUs per VM 2 

RAM per VM 4 GB 

Node Pool Count 2 

OS Disk Size 50 GB 

Terraform is an open-source infrastructure as code (IaC) software tool created by HashiCorp 

[14]. It enables users to define and provision data center infrastructure using a high-level 

configuration language known as HashiCorp Configuration Language (HCL), or optionally 

JSON. Terraform manages external resources (such as public cloud infrastructure, private 

cloud infrastructure, network appliances, software as a service, and platform as a service) with 

a provider model. This IaC approach provides a consistent workflow for provisioning and 

managing the lifecycle of cloud infrastructure. 

On-Premises Environment (K3S) 

It utilizes physical or virtual machines with the following specifications: three Control Plane 

Nodes each with 2 CPUs, 4GB of memory, and a 50GB SSD OS disk. Two Worker Nodes 

each have 2 CPUs, 4GB of memory, and a 50GB SSD OS disk as shown in Table 7 and Table 

8. K3S is deployed using vSphere Center [15] to provide VMs and Ansible [16] for 

configuration management and automation. 

Table 7. Specifications for Each Control Plane Node in On-Premises K3S Environment 

Component Specification 

vCPUs per VM 2 

RAM per VM 4 GB 

OS Disk Size 50 GB SSD each 

Master Node Count  3 
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Table 8. Specifications for Each Worker Node in On-Premises K3S Environment 

Component Specification 

vCPUs per VM 2 

RAM per VM 4 GB 

OS Disk Size 50 GB SSD each 

Worker Node Count 2 

vSphere is a virtualization platform from VMware. vSphere, which includes ESXi hypervisor 

and vCenter server, allows users to manage virtual machines (VMs) and other infrastructure 

components from a centralized location.  

Ansible is an open-source tool for provisioning, configuration management, and application-

deployment enabling infrastructure as code. It uses SSH to execute operations on remote 

machines, making it agentless and easy to manage. By using Ansible with vSphere, users can 

automate the deployment, configuration, and management of their virtual infrastructure. 

3.2.2. Platform Infrastructure Elements 

The “Online Boutique” platform leverages several critical infrastructure elements to ensure 

robust and scalable operations: 

Ingress Controller (NGINX) 

The NGINX Ingress Controller [17] monitors Kubernetes Ingress resources and configures 

NGINX to handle incoming traffic to the Kubernetes cluster. It performs key functions such as 

load balancing, reverse proxying, SSL/TLS termination, and health checks. This ensures that 

traffic is efficiently managed and routed within the platform. 

Prometheus 

Prometheus [18] is an open-source monitoring and alerting toolkit designed for reliability and 

scalability. It is used to collect and store metrics from various Kubernetes objects, such as 

nodes, pods, containers, and services. Prometheus follows a pull-based model, periodically 

scraping metrics from targets and storing them as time series data. 

Grafana 

Grafana [19] is an open-source interactive data-visualization platform that allows users to 

create and share dashboards. It integrates with Prometheus to visualize metrics and provide 
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insights into system performance. Grafana dashboards are used to monitor the health and 

behavior of “Online Boutique's” services and infrastructure. 

3.2.3. Deployment Scenarios 

“For this case study, we will use only a production-ready environment for deploying the 

“Online Boutique” application. However, in real-world scenarios, it is good practice to have 

three separate environment setups: development, staging, and production. 

Development environment used for initial development and testing. It allows developers to 

build and test new features in an isolated setting. Typically, it includes tools and configurations 

that enable rapid iterations and debugging. 

Staging environment mimics the production environment as closely as possible. It is used for 

final testing before deployment to production. The staging environment helps identify  

any issues that might not have been caught during development and ensures that the application 

behaves as expected under production-like conditions. 

Production environment is the live environment where the application is accessible to end-

users. It is optimized for performance, reliability, and security. Changes to the production 

environment are made cautiously and are usually preceded by thorough testing in the 

development and staging environments.” [20] 

3.2.4. Testing Methodology 

This section outlines the tools and methodologies used for performance and load testing, as 

well as observability and monitoring practices. 

Performance Testing 

Performance testing evaluates the application's responsiveness and stability under various 

conditions. The tools and methodologies used for performance testing include: 

• Tools used for simulating user interactions and load: 

o Apache AB (Apache Benchmark) [21] is a tool for benchmarking web server 

performance by simulating multiple user requests. 

o K6 [22] is a modern load testing tool that provides scripting capabilities to 

define complex testing scenarios. 

• Metrics Collected: Response time, throughput, CPU and memory utilization, error 

rates, and latency. 
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Load Testing 

Load testing assesses the application's behavior under high demand to ensure it can scale and 

remain stable. The key components of load testing include: 

• Scenarios: Simulate peak traffic conditions, such as simultaneous device data 

submissions and multiple user interactions. 

• Objectives: Identify the maximum load the system can handle, detect bottlenecks, and 

ensure the application scales appropriately. 

Observability and Monitoring 

Monitoring the application's performance during testing is crucial for identifying issues and 

ensuring smooth operation. The observability and monitoring tools used include: 

• Tools Used: The Grafana and Prometheus stack for metrics collection and 

visualization. 

• Metrics Monitored: System health, resource usage, application performance, and user 

activity. 

Prometheus collects and stores metrics, while Grafana visualizes these metrics in customizable 

dashboards. This stack provides a comprehensive view of the application's performance and 

helps identify potential issues during testing. 
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4. Implementation and Deployment 

4.1. Deploying Application on Azure Kuberentes Service (AKS) 

This section demonstrates how Azure Kubernetes Service (AKS) is utilized to deploy and 

manage the “Online Boutique” microservices application effectively. This deployment focuses 

on configuration, setup, the deployment process, and addressing common challenges with 

practical solutions. Detailed steps and configuration files used for this deployment can be 

accessed in the GitHub repository linked in “Appendix” at the end of this document. 

4.1.1. Configuration and Setup of Infrastructure 

Setting up an AKS cluster involves selecting the appropriate region, VM size, and type. For 

this deployment, the Standard_A2_v2 SKU with 2 vCPUs and 4GB RAM for each of the two 

nodes is used. The OS disk size is set to 50GB SSD. This configuration provides a balance of 

cost-efficiency and performance, suitable for a demonstration environment. Using Terraform, 

the deployment in Azure includes the following resources: 

resource "azurerm_resource_group" "resource_group" { 

  name     = "${var.prefix}-rg" 

  location = var.azure_location 

} 

 

resource "azurerm_kubernetes_cluster" "aks" { 

  name                    = "${var.prefix}-aks" 

  location                = 

azurerm_resource_group.resource_group.location 

  resource_group_name     = azurerm_resource_group.resource_group.name 

  dns_prefix              = "${var.prefix}-aks" 

  sku_tier                = "Standard" 

 

 

  default_node_pool { 

    name                = "a2v2" 

    node_count          = 2 

    vm_size             = "Standard_A2_v2" 

    type                = "VirtualMachineScaleSets" 

    os_disk_size_gb     = 50 

  } 

 

  identity { 

    type = "SystemAssigned" 
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  } 

 

  network_profile { 

    network_plugin    = "kubenet" 

    network_policy    = "calico" 

    load_balancer_sku = "standard" 

  } 

} 

Code 1. Terraform configuration script for deploying an Azure Kubernetes Service (AKS) cluster 

This Terraform script shown in Code 1 defines the infrastructure for deploying an Azure 

Kubernetes Service (AKS) cluster along with its associated Azure Resource Group. The script 

is divided into four parts: 

Azure Resource Group: 

• An Azure Resource Group is created using a name that combines a user-defined prefix 

with "-rg". 

• The location of the Resource Group is specified by the user in Terraform variables file. 

Azure Kubernetes Service (AKS) Cluster: 

1. Configuration: 

a. Name: The name of the AKS cluster is constructed using a prefix specified by 

the user followed by "-aks". 

b. Location: The location is inherited from the previously created resource group. 

c. Resource Group: The AKS cluster is created within the specified resource 

group. 

d. DNS Prefix: A DNS prefix for the AKS cluster is set, using the prefix specified 

by the user. 

e. SKU Tier: The cluster uses the "Standard" SKU tier, which is suitable for 

production workloads. 

2. Node Pool Configuration 

a. Name: The default node pool is named "a2v2". 

b. Node Count: The node pool consists of 2 nodes. 

c. VM Size: The virtual machines in the node pool use the "Standard_A2_v2" size. 

d. Type: The nodes are part of a Virtual Machine Scale Set. 

e. OS Disk Size: Each node has a 50 GB OS disk. 

3. Identity Configuration 
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a. Type: The AKS cluster uses a "SystemAssigned" managed identity for 

resource access. 

4. Network Profile 

a. Network Plugin: The cluster uses the "kubenet" [23] network plugin for basic 

networking. 

b. Network Policy: The cluster uses the "calico" [24] network policy for network 

security and policy enforcement. 

c. Load Balancer SKU: The cluster uses the "standard" SKU for the load 

balancer, which provides better performance and features compared to the basic 

SKU. 

To achieve this configuration, the following prerequisites and installation steps are followed: 

Prerequisites: 

• Terraform installed using Terraform official documentation 

• Kubernetes cluster (AKS) [25] 

• kubectl installed and configured to interact with the cluster   

• Helm installed and configured to interact with the cluster 

Installation Steps: 

1. Clone the GitHub repository: 

git clone https://github.com/ajanach/comparison-of-orchestration-

systems-for-microservices-applications.git 

2. Navigate to the infrastructure directory: 

cd aks/infrastructure 

3. Copy the example Terraform variables file: 

cp terraform.tfvars.example terraform.tfvars 

The terraform.tfvars file should be edited with the correct credentials for the 

Terraform service provider on Azure. This file contains configuration parameters such 

as subscription ID, client ID, client secret, and tenant ID necessary for Terraform to 

manage resources on Azure. 

4. Initialize Terraform: 

terraform init 

5. Plan the Terraform deployment: 

terraform plan 

https://developer.hashicorp.com/terraform/tutorials/aws-get-started/install-cli
https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/
https://github.com/ajanach/comparison-of-orchestration-systems-for-microservices-applications?tab=readme-ov-file#aks---infrastructure
https://helm.sh/docs/intro/install/
https://github.com/ajanach/comparison-of-orchestration-systems-for-microservices-applications?tab=readme-ov-file#aks---infrastructure
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The terraform plan command creates an execution plan, showing what actions 

Terraform will take to achieve the desired state defined in the configuration files. It 

verify that the configuration is correct before making any changes. 

6. Apply the Terraform plan: 

terraform apply 

This command applies the changes required to reach the desired state of the 

configuration, creating and configuring the AKS cluster. 

7. Configure kubectl: 

mkdir ~/.kube 

terraform output -raw kube_config > ~/.kube/config 

8. Verify the nodes: 

kubectl get nodes 

The output of above command should be similar to the following example output: 

NAME                           STATUS   ROLES   AGE     VERSION 

aks-a2v2-96764596-vmss000000   Ready    agent   3m36s   v1.28.10 

aks-a2v2-96764596-vmss000001   Ready    agent   3m41s   v1.28.10 

 

AKS infrastructure overview: 

After completing the installation steps, it's essential to understand the key components involved 

in a typical AKS deployment. The following diagram in Figure 4 provides a generic overview 

of an Azure Kubernetes Service (AKS) deployment, illustrating the critical infrastructure 

elements that ensure the smooth operation of Kubernetes clusters: 

1. Azure Container Registry (ACR) is used to store and manage Docker container 

images that are deployed to the AKS cluster. 

2. Azure Key Vault securely stores and manages sensitive information such as secrets, 

keys, and certificates, which are necessary for accessing various resources within the 

AKS environment. 

3. Kubernetes API Server is the central management entity of the Kubernetes control 

plane. It processes requests to and from the Kubernetes cluster and ensures the desired 

state is maintained. 

4. Log Analytics Workspace collects and analyzes data generated by resources within 

the AKS environment, providing insights into performance, security, and operational 

issues. 
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5. PostgreSQL Database is used to store relational data required by the “Online 

Boutique” application. It serves as the backend database for various microservices. 

6. User and System Node Pools are groups of nodes within the AKS cluster. User node 

pools handle application workloads, while system node pools manage system-level 

processes and infrastructure services. 

  

Figure 4.  Create Azure Kubernetes Service (AKS) using Terraform. Source: [26]. 

4.1.2. Deployment Process of Application Services 

A standardized deployment process is utilized across both AKS and K3S to ensure consistency 

and reproducibility. The application is deployed using YAML manifests to configure 

Kubernetes resources. This approach allows for version control and easy modifications to the 

deployment configuration 

1. Navigate to the application services directory: 

cd aks/application-services 

2. Apply the Kubernetes manifests: 

kubectl apply -f kubernetes-manifests.yaml 

The kubernetes-manifests.yaml file contains definitions for all the Kubernetes 

resources required to deploy the “Online Boutique” application, including 

deployments, services, and ingress controllers. 

3. Retrieve the external IP address to access the web GUI: 

kubectl get service frontend-external | awk '{print $4}' 
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4. Open the browser and navigate to: 

http://<external_IP> 

Note: As shown in Figure 5, it may take a few minutes for the platform to be online. 

 

Figure 5. Retrieving the external IP address and accessing the “Online Boutique” application through a browser 

on Azure Kubernetes Service (AKS) 

4.1.3. Deployment Process of System Services 

To ensure a comprehensive monitoring and management solution for the AKS environment, 

the kube-prometheus-stack is deployed using Helm. This setup includes Prometheus for 

monitoring, Grafana for visualization, and other essential components. 

Installation Steps: 

1. Add Prometheus Community Helm Repository: 

helm repo add prometheus-community https://prometheus-

community.github.io/helm-charts 

helm repo update 

2. Install kube-prometheus-stack: 

helm install kube-prometheus-stack prometheus-community/kube-

prometheus-stack --version 61.3.1 

This command installs the kube-prometheus-stack Helm chart, which includes 

Prometheus, Grafana, and other monitoring tools. 

3. Verify Installation: 
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kubectl --namespace default get pods -l "release=kube-prometheus-

stack" 

This command checks the status of the installed pods to ensure they are running 

correctly. 

4. Set port forwarding to access Grafana web GUI: 

kubectl port-forward svc/kube-prometheus-stack-grafana 3000:80 

& 

This sets up port forwarding to access the Grafana web GUI. After setting up port 

forwarding, open a browser and navigate to http://localhost:3000. 

As shown in Figure 6, you will be prompted for a username and password: 

• Username: admin 

• Password: prom-operator 

 

Figure 6. Accessing the Grafana dashboard through port forwarding on Azure Kubernetes Service (AKS) 

4.1.4. Challenges and Solutions 

Deploying and managing microservices applications on AKS comes with several challenges. 

Next, challenges are discussed along with possible solutions in real-world scenarios. 

1. Secret Management 

Challenge: Managing sensitive information such as API keys, database credentials, and 

certificates securely is a critical challenge. Ensuring that these secrets are not exposed and are 

http://localhost:3000/


38 

managed properly across various environments is essential for maintaining the security of the 

application. 

Solution: Kubernetes Secrets [27] can be used to securely store and manage sensitive 

information. These secrets are encrypted at rest and can be accessed by the applications running 

in the cluster, ensuring that sensitive information is kept secure. Additionally, Azure Key Vault 

[28] can be integrated with Kubernetes to manage secrets, keys, and certificates centrally, 

offering an extra layer of security and ease of management across different environments. 

2. Load Balancing 

Challenge: Efficient distribution of traffic across multiple service instances is essential for 

maintaining high performance and availability. This process involves managing traffic flow, 

balancing loads, and ensuring seamless failovers to prevent service disruptions.   

Solution: Ingress Controllers can be implemented to manage traffic routing effectively. The 

NGINX Ingress Controller [17] is commonly used for this purpose, providing robust load 

balancing, SSL termination, and routing capabilities. 

3. Autoscaling 

Challenge: Automatically adjusting the number of running instances based on demand is 

crucial for handling varying loads and ensuring optimal resource utilization. This involves 

scaling out by adding more instances during high traffic and scaling in by reducing instances 

when demand decreases.  

Solution: The Horizontal Pod Autoscaler (HPA) [29] can be utilized to automatically scale 

applications based on resource utilization metrics such as CPU and memory usage. This 

ensures that the application can handle increased load without manual intervention. 

4. Resource Management 

Challenge: Optimizing the allocation of resources to prevent overuse or underutilization is 

important for cost-efficiency and performance. Proper resource management ensures that 

applications have enough resources to function correctly while avoiding waste. 

Solution: Resource quotas and limits can be set to ensure that applications have the necessary 

resources while preventing overuse. This helps maintain a balance between resource allocation 

and application performance. 
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5. Deployment Rollbacks 

Challenge: Handling issues that arise during deployments and needing to roll back to a 

previous stable state is a common challenge. Ensuring that deployments can be rolled back 

quickly and without disruption is critical for maintaining service availability. 

Solution: Use Kubernetes' built-in deployment strategies, such as rolling updates and 

rollbacks, to manage application updates. This allows for safe and efficient deployment 

processes, with the ability to revert to previous versions if issues are encountered. 

6. Monitoring and Observability 

Challenge: Implementing robust monitoring and observability to track system performance, 

health, and security is essential. This includes setting up metrics collection, logging, and 

alerting to proactively identify and resolve issues. 

Solution: Utilize the Grafana and Prometheus stack to monitor the application and 

infrastructure. Prometheus collects and stores metrics, while Grafana visualizes these metrics 

in customizable dashboards. Alerting is configured within Prometheus using the Grafana 

dashboard GUI, enabling easy setup and management of alerts that automatically notify the 

relevant teams when predefined thresholds are exceeded, ensuring timely responses to potential 

issues.  

7. Cluster Management 

Challenge: Managing the Kubernetes cluster itself, including node health, scaling, and 

upgrades, can be complex. Ensuring that the cluster remains healthy and up to date requires 

continuous attention and maintenance. 

Solution: Use Azure’s managed AKS features, which handle many cluster management tasks 

automatically, such as node upgrades and patching. Additionally, leverage Azure Monitor [30] 

and Azure Advisor [31] to gain insights and recommendations on cluster health and 

performance. 

8. Network Configuration 

Challenge: Configuring and managing the network settings for AKS, including VNet 

integration, network policies, and ingress/egress controls, can be challenging. Ensuring secure 

and efficient network traffic flow is crucial. 



40 

Solution: Use Azure’s native VNet integration for AKS to simplify network configuration. 

Implement Kubernetes Network Policies to control traffic flow between pods and use Azure 

Firewall or Network Security Groups (NSGs) to manage ingress and egress traffic securely. 

9. Identity and Access Management 

Challenge: Managing access to the AKS cluster and its resources securely is vital. This 

includes controlling who can access the cluster, what actions they can perform, and ensuring 

that applications running in the cluster can access necessary resources securely. 

Solution: Utilize Azure Active Directory (AAD) integration with AKS for robust identity and 

access management. Use Role-Based Access Control (RBAC) to define fine-grained access 

controls and leverage Managed Identities for secure access to Azure resources from 

applications running in the cluster. 

4.2. Deploying on K3S 

This section details the process of deploying and managing the “Online Boutique” 

microservices application using K3S. The following subsections cover the configuration and 

setup of the infrastructure, the deployment process for application and system services, and the 

challenges encountered along with their solutions. Detailed steps and configuration files used 

for this deployment can be accessed in the GitHub repository linked in “Appendix” at the end 

of this document. 

4.2.1. Configuration and Setup of Infrastructure 

Virtual Machine Configuration in vSphere 

The K3S Kubernetes cluster is set up on virtual machines configured in vSphere, as shown in 

Table 9. The configuration for these VMs is outlined in the table below: 

Table 9. Configuration of virtual machines for the K3S Kubernetes cluster in vSphere 

Host CPUs Total RAM 

(GB) 

OS Disk 

Size (GB) 

IP Address 

ajanach-thesis-cp-01 2 4.06 50 10.10.48.151 

ajanach-thesis-cp-02 2 4.06 50 10.10.48.152 



41 

ajanach-thesis-cp-03 2 4.06 50 10.10.48.153 

ajanach-thesis-wn-01 2 4.06 50 10.10.48.154 

ajanach-thesis-wn-02 2 4.06 50 10.10.48.155 

The vCenter web UI on Figure 7 illustrates the setup process of a K3S Kubernetes cluster on 

virtual machines (VMs) configured within a vSphere environment. This visual representation 

demonstrates the creation and configuration of the five VMs. 

 

Figure 7. vCenter Web UI Displaying the Creation of Five Virtual Machines for the K3S Kubernetes Cluster 

Ansible Setup 

Prerequisites: 

• Ansible installed on workstation machine,  

• K3s cluster [25], 

• kubectl installed and configured, 

• Helm installed and configured. 

Ansible [16] is used to automate the configuration and deployment of the K3S cluster. The 

following steps outline the Ansible setup: 

1. Clone the GitHub repository: 

https://docs.ansible.com/ansible/latest/installation_guide/installation_distros.html
https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/
https://github.com/ajanach/comparison-of-orchestration-systems-for-microservices-applications?tab=readme-ov-file#k3s---infrastructure
https://helm.sh/docs/intro/install/
https://github.com/ajanach/comparison-of-orchestration-systems-for-microservices-applications/blob/master/k3s/system-services/README.md#step-1-add-prometheus-community-helm-repository
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git clone https://github.com/ajanach/comparison-of-orchestration-

systems-for-microservices-applications.git 

2. Navigate to the infrastructure directory: 

cd k3s/infrastructure 

3. Edit the inventory file, which specifies the IP addresses of the control plane and 

worker nodes in the cluster. 

[master_1] 

ajanach-thesis-cp-01 ansible_host=<IP_CONTROL_PLANE_01> 

 

[master_2] 

ajanach-thesis-cp-02 ansible_host=<IP_CONTROL_PLANE_02> 

ajanach-thesis-cp-03 ansible_host=<IP_CONTROL_PLANE_03> 

 

[worker] 

ajanach-thesis-wn-01 ansible_host=<IP_WORKER_01> 

ajanach-thesis-wn-02 ansible_host=<IP_WORKER_02> 

 

[production:children] 

master_1 

master_2 

worker 

4. Edit ansible.cfg. This configuration file sets the defaults for Ansible operations, 

including the inventory file location and user credentials. 

[defaults] 

inventory = inventory 

remote_user = <USERNAME> 

ask_pass = false 

 

[privilege_escalation] 

become = true 

become_user = root 

become_method = sudo 

become_ask_pass = false 

5. Edit vars.yaml. This file includes variables used by the Ansible playbooks, such as the 

IP address of the K3S server. 

k3s_server_ip: "<IP_CONTROL_PLANE_01>" 

6. Test reachability. Use Ansible to ping all specified nodes and ensure they are reachable. 

cd k3s/infrastructure 

ansible -i inventory all -m ping 

7. Run Ansible playbook to install K3S. This playbook installs K3S on the specified nodes 

in inventory. 

ansible-playbook -i inventory k3s_install.yaml 

8. Verify Cluster Availability: Use kubectl to check the status of the nodes and ensure 

they are ready. 

kubectl get nodes 
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Example output: 

NAME                   STATUS   ROLES                       AGE     VERSION 

ajanach-thesis-cp-01   Ready    control-plane,etcd,master   3d17h   v1.29.6+k3s2 

ajanach-thesis-cp-02   Ready    control-plane,etcd,master   3d17h   v1.29.6+k3s2 

ajanach-thesis-cp-03   Ready    control-plane,etcd,master   3d17h   v1.29.6+k3s2 

ajanach-thesis-wn-01   Ready    <none>                      3d17h   v1.29.6+k3s2 

ajanach-thesis-wn-02   Ready    <none>                      3d17h   v1.29.6+k3s2 

The figure Figure 8 illustrates the architecture of the K3s setup used in this specific case 

scenario, showing how the control plane and worker nodes are configured within the cluster. It 

reflects the deployment strategy tailored to the current requirements, providing a clear view of 

the infrastructure as implemented. 

 

Figure 8. K3s Infrastructure for Online Boutique Deployment  

In contrast to the specific setup shown in Figure 8, Figure 9 presents a recommended high-

availability architecture for K3s, suitable for production environments. This setup includes 

multiple control planes and worker nodes to enhance resilience and scalability. While Figure 8 

details the configuration used in this case, Figure 9 offers a broader, more robust approach to 

deploying K3s in scenarios that demand higher availability and fault tolerance. 
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Figure 9. Recommended High-Availability K3s Setup. Source: [32]. 

4.2.2. Deployment Process of Application Services 

Deploying the “Online Boutique” application on the K3S cluster involves applying Kubernetes 

manifests to configure and launch the services. It is important to note that the YAML manifests 

used for deploying the application are the same for both AKS and K3S, ensuring consistency 

across different environments. The following steps outline the deployment process: 

1. Navigate to the Application Services Directory: 

cd k3s/application-services 

2. Apply the Kubernetes Manifests: 

kubectl apply -f kubernetes-manifests.yaml 

This command applies the Kubernetes manifests, creating the necessary resources 

such as deployments, services, and configurations for the application. 

3. Retrieve the External IP Address to Access the Web GUI: 

kubectl get service frontend-external | awk '{print $4}' 

A list of IP addresses will be provided, each representing the IP address of a node. 

This means that the application is available through the IP address of any node. 

4. Access the Application: 

Open a browser and navigate to http://<external_IP>. As shown in Figure 10, it 

may take a few minutes for the application to be online. 
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Figure 10. Retrieving the external IP address and accessing the “Online Boutique” application through a 

browser on K3s  

4.2.3. Deployment Process of System Services 

The process of deploying system services on K3S is the same as described in Chapter 4.1.3 for 

AKS. This involves setting up the kube-prometheus-stack using Helm to ensure comprehensive 

monitoring and management of the K3S environment. The deployment includes Prometheus 

for monitoring, Grafana for visualization, and other essential components. 

4.2.4. Challenges and Solutions 

Deploying and managing microservices applications on K3S comes with several challenges. 

Here, real challenges are discussed along with solutions to overcome them, including real-

world scenarios. 

1. Resource Constraints  

Challenge: K3S is designed for lightweight environments, but resource constraints can still 

pose challenges. Ensuring adequate resource allocation and monitoring is crucial.  

Solution: Optimize resource usage by configuring appropriate resource limits and requests for 

each microservice. Use monitoring tools like Prometheus and Grafana to track resource usage 

and identify bottlenecks and underutilization. 
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2. Networking Complexity  

Challenge: Managing network configurations and ensuring reliable communication between 

services can be complex.  

Solution: Utilize the built-in networking capabilities of K3S, such as the Flannel [33] or Calico 

[24] network plugins. Ensure proper configuration of network policies and security groups to 

facilitate secure and reliable communication. 

3. High Availability  

Challenge: Achieving high availability in a resource-constrained environment can be difficult, 

especially with limited nodes.  

Solution: Deploy multiple control plane nodes to ensure redundancy. Configure K3S to use an 

external database for storing cluster state, enhancing resilience and availability. 

4. Security  

Challenge: Ensuring robust security in a lightweight Kubernetes environment is essential.  

Solution: Implement best practices for securing the cluster, including using role-based access 

control (RBAC), enabling mutual TLS (mTLS) for service communication, and regularly 

updating and patching the cluster components. 

5. Integration with CI/CD Pipelines  

Challenge: Integrating K3S with continuous integration and continuous deployment (CI/CD) 

pipelines can be challenging.  

Solution: Use tools like Jenkins, GitLab CI, or GitHub Actions to automate the deployment 

process. Configure these tools to interact with the K3S cluster using kubectl and Helm, 

ensuring a smooth and automated deployment process. 
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5. Performance and Cost Analysis 

5.1. Resource Utilization 

This section evaluates the resource utilization of Azure Kubernetes Service (AKS) and K3S 

clusters. The analysis focuses on CPU, memory usage, storage, and network performance, 

emphasizing the different architectures and configurations that contribute to resource 

consumption. The measurements are taken during the idle state of the clusters, with the “Online 

Boutique” application and necessary system services deployed but not actively processing user 

interactions.  

AKS, being a cloud-based Kubernetes service, runs additional operational and management 

containers compared to K3S. This results in different resource utilization patterns between the 

two. AKS utilizes Calico as its Container Network Interface (CNI), which provides robust 

networking capabilities suited for complex environments, whereas K3S employs Flannel, a 

lightweight CNI, contributing to lower system overhead [34]. 

5.1.1. Comparison of Pods and Containers 

A critical factor influencing resource utilization and performance in Kubernetes clusters is the 

number and type of pods and containers running within the environment. This section provides 

a detailed comparison between Azure Kubernetes Service (AKS) and K3S, focusing on the 

distinct workloads managed by each platform. By examining the specific pods and containers 

deployed, we can gain insights into how each cluster is configured and the implications this 

has on resource consumption. 

In AKS, the cluster runs a greater number of system-related pods, which include cloud-specific 

components such as monitoring agents, network management tools, and storage interface 

drivers. These additional pods are integral to the cloud-based operations and management 

features provided by Azure. Opposite, K3S, being a lightweight Kubernetes distribution, is 

designed with minimal overhead and runs fewer system pods. The absence of cloud-specific 

containers in K3S leads to lower baseline resource usage, making it an ideal choice for 

environments where efficiency and simplicity are paramount. 
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Example of AKS Pods vs. K3S Pods 

The Table 10 compares the pods running in AKS and K3S, showcasing both the similarities 

and differences in the workloads they manage: 

Table 10. Detailed Comparison of Pod and Container Distribution Between Azure Kubernetes Service (AKS) 

and K3S 

Component AKS (Azure Kubernetes Service) K3S (Lightweight 

Kubernetes) 

Total Number of Pods 42 Pods 30 Pods 

Application Pods of 

“Online Boutique” 

15 Pods 15 Pods 

System Services 7 Pods (e.g., kube-prometheus-stack) 7 Pods (e.g., kube-

prometheus-stack) 

Cloud-Specific 

Components 

Yes (e.g., cloud node managers, CSI 

drivers, network management tools) 

No 

Network Management 

Tools 

Yes (e.g., Calico) Yes (e.g., Flannel) 

Storage Interface 

Drivers 

Yes (e.g., AzureDisk CSI, AzureFile 

CSI) 

No 

Baseline Resource 

Usage 

Higher (due to additional cloud-

specific containers) 

Lower (minimal overhead) 

Kubernetes System 

Pods 

20 Pods (e.g., kube-proxy, metrics-

server, coredns) 

8 Pods (e.g., kube-proxy, 

metrics-server, coredns) 

5.1.2. CPU and Memory Usage  

The analysis of CPU and memory utilization provides insight into how each platform manages 

workloads and optimizes resource use. The Table 11 and Table 12 summarize the key metrics 

for each worker node in both clusters. 
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Table 11. AKS Cluster Resource Utilization (Idle State with “Online Boutique” Deployed) 

Node CPU 

Busy (%) 

System 

Load (%) 

RAM 

Used (%) 

Root FS 

Used (%) 

Worker Node 1 42.30 98.50 54.10 54.50 

Worker Node 2 23.30 99.50 36.00 50.90 

Table 12. K3S Cluster Resource Utilization (Idle State with “Online Boutique” Deployed) 

Node CPU Busy 

(%) 

System 

Load (%) 

RAM 

Used (%) 

Root FS 

Used (%) 

Worker Node 1 12.50 17.50 62.60 33.80 

Worker Node 2 3.70 5.50 42.90 18.10 

AKS Nodes: The AKS nodes exhibit higher system loads, with Worker Node 2 reaching 

99.5%, despite lower CPU utilization. This suggests that the additional containers and the 

Calico CNI contribute significantly to overhead. In AKS, there are 42 running pods across the 

cluster, which include operational containers such as cloud node managers, CSI (Container 

Storage Interface) drivers, and monitoring agents. These extra containers are essential for 

cloud-specific operations and management, leading to increased resource consumption 

K3S Nodes: K3S nodes demonstrate lower CPU, and system loads due to Flannel's lightweight 

nature and the absence of additional cloud-based operational containers. The K3S cluster has 

30 running pods, which is fewer than AKS, reflecting the absence of those additional cloud-

specific components. Despite this, K3S nodes show higher RAM usage, which suggests a 

different memory allocation strategy that potentially enhances real-time application 

performance by allocating more resources to active processes. 

5.1.3. Storage and Network Performance 

Storage and network performance are critical factors in understanding how efficiently data is 

handled and transferred across the cluster. The metrics are analyzed to identify key differences 

in performance between AKS and K3S, as shown in Table 13. 
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Table 13. Storage and Network Performance (Idle State with “Online Boutique” Deployed) 

Cluster Node Root FS 

Used (%) 

Network Traffic Insights 

AKS Worker Node 1 54.50 Moderate activity with occasional peaks 

AKS Worker Node 2 50.90 Consistently moderate to high traffic 

K3S Worker Node 1 33.80 Low variability, minimal traffic 

K3S Worker Node 2 18.10 Stable and minimal traffic 

Storage Utilization: AKS nodes have higher filesystem usage due to the additional 

components and services required for cloud operations, such as persistent volume management 

and network overlays. In contrast, K3S nodes maintain lower filesystem usage, benefiting from 

the absence of these additional layers. 

Network Traffic: The AKS nodes experience more network traffic variability, attributed to 

the extensive inter-service communications facilitated by Calico. This variability could impact 

latency and performance in data-intensive applications. K3S's network traffic is more stable 

and lower due to Flannel's simplified network operations and fewer services running 

concurrently. 

The Figure 11 and Figure 12 demonstrate detailed metrics from Grafana dashboards to provide 

a visual representation of the discussed metrics. 
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Figure 11. Grafana AKS Cluster Resource Utilization 
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Figure 12. Grafana K3S Cluster Resource Utilization 

5.2. Benchmark Results 

This section evaluates the operational performance of AKS and K3S using three primary tools: 

Apache AB, K6, and Sysbench. These tools measure various metrics, including requests per 

second, response times, and system benchmarks. The analysis identifies key differences in 

performance and scalability between the two platforms. The configuration includes: 

• Apache Bench (AB): Simulates high concurrency levels to evaluate the maximum 

request-handling capabilities of each platform. 

• K6: Evaluates the platforms under various virtual user (VU) loads, simulating real-

world traffic patterns. 
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• Sysbench: Measures CPU and memory performance to assess the raw computational 

capacity available to each cluster. 

Test Setup: 

The performance tests are conducted in a controlled environment to ensure comparability 

between AKS and K3S. Both platforms are configured similarly, with two worker nodes each 

running the “Online Boutique” microservices application. For more realistic load testing, one 

container for the front-end service is deployed on each worker node, ensuring that both nodes 

experience the load during the tests. 

5.2.1. Apache AB Results   

The AB tests are conducted with 1,000 requests at a concurrency level of 100. This setup is 

designed to evaluate the request-handling capabilities of both AKS and K3S under a moderate 

load, ensuring that the application can effectively manage concurrent requests without being 

overwhelmed. The following metrics are recorded: 

• Average Requests per Second: This metric indicates the number of requests 

successfully processed by the server each second. 

• Average Time per Request: This metric measures the average time taken to manage 

a single request, reflecting the platform's responsiveness. 

A detailed guide on setting up and running the AB command is available on GitHub. The 

command used for testing is: 

ab -k -n 1000 -c 100 -l -H "Accept-Encoding: gzip, deflate" 

http://57.153.130.215/ 

This command performs a performance test on the index page of the "Online Boutique" 

application, accessible via the URL http://57.153.130.215/. Replace http://57.153.130.215/ 

with the actual URL of your service. Below is a description of what each parameter does: 

• -k: Sends the Keep-Alive header to maintain open connections. 

• -n 1000:  Number of requests to make. 

• -c 100: Number of concurrent requests to simulate. 

• -l: Accepts response sizes larger than the internal memory buffer. 

• -H Accept-Encoding: gzip, deflate: Used to compress the output for more efficient 

data transfer. The use of mod-deflate compresses the text/html output, which 

significantly impacts the overall performance of the web server. 

https://github.com/ajanach/comparison-of-orchestration-systems-for-microservices-applications/blob/master/benchmark/ab_http_bench/README.md
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The results of the Apache AB benchmark are presented in Table 14: 

Table 14. Apache AB Benchmark Results for AKS and K3S 

Metric AKS K3S 

Average requests per second 44.28 112.27 

Average time per request (ms) 22.58 8.90 

As shown in Figure 13, these results highlight the superior request-handling efficiency of K3S 

compared to AKS. K3S processed more than twice the number of requests per second on 

average and had a significantly lower average time per request. 

 

Figure 13. Apache AB Benchmark Results for AKS and K3S 
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The diagram on Figure 14 visually represents the Apache AB benchmark results, illustrating 

the differences in performance between the two platforms. 

 

 

Figure 14. Comparison of Average Requests per Second Between AKS and K3S 

System load analysis of Apache AB benchmark: 

To further understand the impact of the AB testing on system resources, Grafana dashboards 

were used to monitor the load on both worker nodes in each cluster. Grafana, utilizing 

Prometheus and Node Exporter, provided real-time insights into CPU, memory, and network 

usage during the tests.  

The results show that there was no significant impact on CPU, RAM, or disk usage in both 

AKS and K3S clusters during the tests. However, as shown in Figure 15 and Figure 16 both 

clusters experienced a considerable increase in network traffic. 
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Figure 15. System Load on AKS Worker Nodes During Apache AB Testing 
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Figure 16. System Load on K3S Worker Nodes During Apache AB Testing 

5.2.2. K6 Results 

The goal of this test is to evaluate how well each orchestration platform can handle realistic 

workloads that mirror user behavior, which is critical for ensuring a robust user experience. 

Unlike synthetic benchmarks such as Apache AB, which primarily focus on request-handling 

capabilities under stress. 

The K6 test script is designed to simulate a typical user journey through the "Online Boutique" 

application. This journey includes visiting the homepage, browsing products, adding items to 

the cart, proceeding to checkout, and returning to the homepage. These steps represent the core 

interactions a user would have on the “Online Boutique” site, making the test highly relevant 

for evaluating the performance of AKS and K3S in a production-like environment.  
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The test script is structured into three stages:  

• Ramp-up to 100 VUs over 30 seconds: This stage evaluates the platform's ability to 

manage increasing loads quickly. 

• Ramp-up to 200 VUs for 30 seconds: This stage evaluates the system's stability under 

a high, consistent load. 

• Ramp-down to 0 VUs over 30 seconds: This stage examines how the platform 

manages decreasing traffic. 

The script is structured as follows: 

import http from 'k6/http'; 

import { check, group, sleep } from 'k6'; 

import { randomIntBetween } from 'https://jslib.k6.io/k6-

utils/1.2.0/index.js'; 

 

export let options = { 

  stages: [ 

    { duration: '30s', target: 100 }, 

    { duration: '30s', target: 200 }, 

    { duration: '30s', target: 0 },  

  ], 

}; 

 

const BASE_URL = 'http://10.10.48.155/'; // replace with your Online 

Boutique URL 

 

export default function () { 

  group('Visit Homepage', function () { 

    let res = http.get(`${BASE_URL}/`); 

    check(res, { 

      'Homepage loaded successfully': (r) => r.status === 200, 

    }); 

    sleep(randomIntBetween(1, 3)); 

  }); 

 

  group('Browse Products', function () { 

    let res = http.get(`${BASE_URL}/product/0PUK6V6EV0`); 

    check(res, { 

      'Product page loaded successfully': (r) => r.status === 200, 

    }); 

    sleep(randomIntBetween(1, 3)); 
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    res = http.get(`${BASE_URL}/product/9SIQT8TOJO`); 

    check(res, { 

      'Another product page loaded successfully': (r) => r.status === 

200, 

    }); 

    sleep(randomIntBetween(1, 3)); 

  }); 

 

  group('Add to Cart', function () { 

    let res = http.post(`${BASE_URL}/cart`, JSON.stringify({ 

product_id: '0PUK6V6EV0', quantity: 1 }), { 

      headers: { 'Content-Type': 'application/json' }, 

    }); 

    check(res, { 

      'Product added to cart': (r) => r.status === 200, 

    }); 

    sleep(randomIntBetween(1, 3)); 

 

    res = http.post(`${BASE_URL}/cart`, JSON.stringify({ product_id: 

'9SIQT8TOJO', quantity: 1 }), { 

      headers: { 'Content-Type': 'application/json' }, 

    }); 

    check(res, { 

      'Another product added to cart': (r) => r.status === 200, 

    }); 

    sleep(randomIntBetween(1, 3)); 

  }); 

 

  group('Proceed to Checkout', function () { 

    let res = http.get(`${BASE_URL}/cart`); 

    check(res, { 

      'Cart page loaded successfully': (r) => r.status === 200, 

    }); 

    sleep(randomIntBetween(1, 3)); 

 

    res = http.post(`${BASE_URL}/cart`, JSON.stringify({ 

      email: 'user@example.com', 

      street_address: '123 Main St', 

      zip_code: '12345', 

      city: 'Somewhere', 

      state: 'CA', 

      country: 'US', 

      credit_card_number: '1234 5678 9012 3456', 

      credit_card_expiration_month: '12', 

      credit_card_expiration_year: '2030', 
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      credit_card_cvv: '123', 

    }), { 

      headers: { 'Content-Type': 'application/json' }, 

    }); 

    check(res, { 

      'Checkout completed': (r) => r.status === 200, 

    }); 

    sleep(randomIntBetween(1, 3)); 

  }); 

 

  group('Return to Homepage', function () { 

    let res = http.get(`${BASE_URL}/`); 

    check(res, { 

      'Homepage loaded after checkout': (r) => r.status === 200, 

    }); 

    sleep(randomIntBetween(1, 3)); 

  }); 

} 

Code 2. K6 test script for simulating virtual user load on AKS and K3S 

To execute the test script provided in Code 2, use the following command: 

k6 run load_test.js 

A detailed guide on setting up and running the K6 tests is available on GitHub.  

The K6 tests generated several key metrics that offer insights into the performance of AKS and 

K3S. These metrics include: 

• Group duration (avg): The average time taken to complete the entire user journey, 

from visiting the homepage to checking out and returning to the homepage. 

• HTTP request duration (avg): The average time taken to process individual HTTP 

requests during the user journey. 

• Total iterations: The number of complete user journeys processed during the test. 

• Total HTTP requests (http_reqs): The total number of HTTP requests made during 

the test. 

• Data received and data sent: The total amount of data exchanged between the client 

and server during the test, which includes data retrieved from the server and data sent 

by the client, such as form submissions. 

• Iteration duration (avg): The average time taken for one complete iteration of the user 

journey. 

 

https://github.com/ajanach/comparison-of-orchestration-systems-for-microservices-applications/tree/master/benchmark/k6_http_bench
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Table 15 summarizes the key performance metrics obtained from the K6 testing on AKS and 

K3S. 

Table 15. K6 Benchmark Results for AKS and K3S 

Metric AKS K3S 

Group Duration (avg) 3.78 s 3.28 s 

HTTP Request Duration (avg) 179.75 ms 20.5 ms 

Total Iterations 425 471 

Total Requests (http_reqs) 6800 7536 

Data Received 28 MB 31 MB 

Data Sent 1.4 MB 1.5 MB 

Iteration Duration (avg) 18.9 s 16.41 s 

The K6 performance tests reveal that K3S achieves faster response times and handles more 

requests compared to AKS when running the "Online Boutique" application. Specifically, K3S 

demonstrates a significantly lower average HTTP request duration (20.5 ms vs. 179.75 ms) and 

completes a higher number of iterations and total requests. 

However, it is important to interpret these results within the broader context of the underlying 

infrastructure and operational environments, which is discussed in detail in Chapter 5.2.3, 

“System Benchmarking Results”. As shown in Figure 17, AKS operates within the Azure cloud 

ecosystem, which involves additional layers of management and cloud services that may 

impact raw performance metrics. Factors such as the hypervisor overhead, the specific CPU 

performance, and the cloud services running within the AKS cluster can contribute to the 

observed differences in performance.  
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Figure 17. K6 Benchmark Results for AKS and K3S 
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The diagram on Figure 18 visually represents the K6 benchmark results, illustrating the 

differences in performance between the two platforms. 

 

Figure 18. Diagram of K6 Benchmark Results for AKS and K3S 

System load analysis of K6 benchmark: 

To further understand the impact of the K6 testing on system resources, Grafana dashboards 

were used to monitor the load on both worker nodes in each cluster. Grafana, utilizing 

Prometheus and Node Exporter, provided real-time insights into CPU, memory, and network 

usage during the tests. The results, as shown in Figure 19 and Figure 20, indicate a significant 

impact on CPU usage in both AKS and K3S clusters during the tests. However, there was no 

significant impact on RAM or disk usage. Both clusters experienced a considerable increase in 

network traffic, similar to the results observed in the AB testing. 
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Figure 19. System Load on AKS Worker Nodes During K6 Testing 
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Figure 20. System Load on K3S Worker Nodes During K6 Testing 

5.2.3. System Benchmarking Results 

The benchmarking is conducted using Sysbench, a multi-threaded benchmark tool that 

evaluates system parameters such as CPU speed, memory transfer rate, and file I/O throughput. 

For consistency, the tests are performed on one worker node from each cluster, as both nodes 

in each cluster are configured identically. 

Evaluate parameters and metrics: 

1. CPU Test: Measures the number of prime numbers generated per second, providing an 

indication of CPU efficiency. 

2. Memory Test: Evaluates the memory transfer speed by performing read operations 

with a specified block size. 

3. File I/O Test: Assesses the read/write throughput and file synchronization (fsync) rates, 

which are crucial for applications with intensive disk operations. 

Table 16 presents the results of the system benchmarking for AKS and K3S: 
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Table 16. System Benchmark Results Comparison for AKS and K3S 

Metric AKS K3S 

CPU Speed (events/s) 8050.65 20219.14 

Memory Transfer Rate (MiB/s) 451.7 1339.27 

Read Throughput (MiB/s) 6.78 36.19 

Write Throughput (MiB/s) 4.52 24.13 

Reads/s 433.73 2316.35 

Writes/s 289.16 1544.23 

Fsyncs/s 925.69 4942.25 

The results indicate that K3S significantly outperforms AKS in all measured metrics. The CPU 

speed of K3S is more than twice that of AKS, highlighting its superior computational 

efficiency. Similarly, K3S demonstrates higher memory transfer rates and better I/O 

throughput, suggesting that it can handle more demanding workloads with greater resource 

efficiency. 
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The diagram on Figure 21 is visually represents the system benchmark results for AKS and 

K3S, highlighting the differences in performance across key metrics 

 

Figure 21. System Benchmark Results for AKS and K3S 
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AKS worker node sysbench output summary: 

The performance results for the AKS and K3S worker nodes during the Sysbench tests are 

summarized in Table 17 and Table 18. 

Table 17. AKS worker node sysbench output summary 

CPU test Memory test File I/O test 

CPU speed: 8,050.65 

events per second 

Latency (ms): avg: 0.12, 

max: 29.49, 95th percentile: 

0.08 

Total operations: 3,072 

(451.70 per second)  

Transfer rate: 451.70 

MiB/sec 

Latency (ms): avg: 2.21, 

max: 37.02, 95th percentile: 

6.67 

File operations: reads/s: 

433.73, writes/s: 289.16, 

fsyncs/s: 925.69  

Throughput: read, MiB/s: 

6.78, written, MiB/s: 4.52 

Latency (ms): avg: 0.60, 

max: 180.51, 95th 

percentile: 2.66 

Table 18. K3S worker node sysbench summary 

CPU test Memory test File I/O test 

CPU Speed: 20,219.14 

events per second 

Latency (ms): avg: 0.05, 

max: 2.03, 95th percentile: 

0.06 

Total Operations: 3,072 

(1,339.27 per second) 

Transfer Rate: 1,339.27 

MiB/sec 

Latency (ms): avg: 0.74, 

max: 1.69, 95th percentile: 

1.04 

File Operations: reads/s: 

2,316.35, writes/s: 

1,544.23, fsyncs/s: 4,942.25 

Throughput: read: 36.19 

MiB/s, written: 24.13 

MiB/s 

Latency (ms): avg: 0.11, 

max: 7.32, 95th percentile: 

0.65 
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Analysis of lscpu output: 

The lscpu command provides details about the CPU architecture and configuration for  worker 

nodes on AKS and K3S. Below is a comparison and analysis based on the lscpu outputs, as 

shown in Table 19. 

Table 19. Highlights of lscpu output 

AKS worker node lscpu output K3S worker node lscpu output 

Architecture:             x86_64 

CPU(s):                   2 

Model name:               Intel(R) 

Xeon(R) CPU E5-2673 v4 @ 2.30GHz 

Thread(s) per core:       1 

Core(s) per socket:       2 

Socket(s):                1 

BogoMIPS:                 4589.37 

Hypervisor vendor:        Microsoft 

L1d cache:                32 KiB 

L1i cache:                32 KiB 

L2 cache:                 256 KiB 

L3 cache:                 50 MiB 

Architecture:            x86_64 

CPU(s):                  2 

Model name:              Intel(R) 

Xeon(R) Silver 4114 CPU @ 2.20GHz 

Thread(s) per core:      1 

Core(s) per socket:      1 

Socket(s):               2 

BogoMIPS:                4389.68 

Hypervisor vendor:       VMware 

L1d cache:               32 KiB 

L1i cache:               32 KiB 

L2 cache:                1 MiB 

L3 cache:                27.5 MiB 

Explanation of Results 

The K3S configuration shows better performance in system benchmarks compared to AKS, 

despite both having a similar number of cores and threads. Several factors contribute to this 

performance difference: 

1. Cache Hierarchy: K3S has a larger L2 cache per instance (1 MiB) compared to AKS 

(256 KiB), which can significantly enhance processing speed for memory-intensive 

tasks. 

2. CPU Architecture: Although both systems use Xeon processors, the architecture and 

generation differences might lead to variations in handling workloads. The Xeon Silver 

4114 on K3S, with a different cache architecture and newer optimizations, shows 

improved throughput and efficiency. 
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3. Hypervisor Overhead: The hypervisor technology used (Microsoft for AKS and 

VMware for K3S) might also affect how efficiently CPU resources are allocated and 

managed, impacting the overall performance. 

4. Virtualization and Execution Environment: The difference in virtualization 

platforms (Microsoft vs. VMware) may lead to variations in CPU performance due to 

different management of resources and overheads. 

5. Memory Transfer Rates: The higher memory transfer rate observed in K3S indicates 

better memory handling, due to the configuration and optimizations in the virtualization 

stack or hardware capabilities. 

Clarification on experimental constraints: 

It is important to clarify that due to limitations in accessing identical hardware configurations 

in the Azure cloud, it was not possible to set up an AKS environment with the same or 

equivalent CPU and memory specifications as the on-premises K3S setup. As a result, while 

the hardware configurations chosen were the closest possible matches, they were not identical. 

This discrepancy introduces a variable that complicates direct comparison between the two 

platforms. Consequently, the superior performance observed in K3S is likely influenced by 

these hardware differences rather than a fundamental advantage of K3S as an orchestration 

tool. 

Therefore, while the results from the benchmarking tests provide valuable insights into the 

performance of AKS and K3S under specific conditions, they should not be interpreted as 

definitive evidence of the superiority of one orchestration tool over the other. 

5.3. Cost Analysis 

This section provides a detailed cost analysis of deploying the "Online Boutique" microservices 

application on Azure Kubernetes Service (AKS) versus K3S. The analysis is grounded in the 

methodology provided by the Azure Total Cost of Ownership (TCO) Calculator. This tool 

allows for a comprehensive comparison of costs between on-premises infrastructure and cloud 

deployments on Azure, using industry-standard pricing assumptions. The goal is to outline the 

methodology used to estimate the total cost of ownership for both platforms and to present a 

comparative cost analysis based on these estimates.  
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5.3.1. Cost Calculation Methodology 

This thesis utilizes the Azure Total Cost of Ownership (TCO) Calculator, an official online tool 

provided by Microsoft Azure [35]. This tool is designed to help businesses estimate the cost 

savings that can be achieved by migrating workloads to Azure. The TCO Calculator compares 

the costs associated with running on-premises infrastructure against deploying in Azure, 

considering a wide range of factors such as hardware, software, operational, and maintenance 

expenses. 

U.S. average pricing assumptions: 

The analysis uses U.S. average pricing assumptions provided by the TCO Calculator, which 

are based on industry-standard values recognized by Nucleus Research [36]. These 

assumptions are crucial for creating a reliable and consistent cost comparison between AKS 

and K3S. Below are the specific assumptions used. 

• Software Assurance Coverage (Azure Hybrid Benefit): This analysis includes the 

Azure Hybrid Benefit, which allows organizations to apply their existing Windows and 

SQL Server licenses with Software Assurance to Azure virtual machines. This benefit 

can lead to significant cost savings by reducing the need to purchase new cloud licenses. 

• Geo-Redundant Storage (GRS): This assumption covers the cost of replicating data 

to a secondary region, enhancing disaster recovery capabilities but increasing storage 

expenses. This feature enhances data availability and disaster recovery capabilities, 

though it adds to storage costs. 

• Virtual Machine Costs: The calculator allows the exclusion of cost recommendations 

for lower-cost, less performing virtual machines, ensuring that the analysis focuses on 

more relevant and widely used VM types. 

• Electricity Costs: Electricity costs are estimated based on the average U.S. price per 

kilowatt-hour, reflecting the power consumption necessary for running servers and 

maintaining data center operations. 

• Storage Costs: Storage costs are detailed for various types of storage, including SAN, 

NAS, and Blob storage. Additionally, an annual enterprise storage software support 

cost is included, reflecting ongoing maintenance and support expenses. 

• IT Labor Costs: The model assumes that one IT administrator can manage a specific 

number of physical servers or virtual machines, with an average hourly rate reflecting 

the cost of IT staff required to maintain and manage infrastructure. 

https://azure.microsoft.com/en-us/pricing/tco/calculator/
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• Hardware Costs: Detailed hardware costs are included, covering various 

configurations of processors, cores, and RAM. These costs reflect the price of 

acquiring, maintaining, and replacing physical hardware over time. 

• Networking Costs: Network-related costs are calculated as a percentage of the overall 

hardware and software costs, including expenses for network hardware, maintenance, 

and data transfer. 

• Data Center Costs: The analysis includes the costs associated with constructing, 

maintaining, and operating data centers. This encompasses initial setup costs, ongoing 

operational expenses, and infrastructure maintenance. 

• Virtualization Costs: The cost of virtualization is considered, including the per virtual 

machine, per month, infrastructure cost for load balancing, backup, and patching. 

• Database Costs: The TCO model also accounts for database-related expenses, 

including licensing for SQL Server and other database management systems. 

• Data Warehouse Costs: The costs associated with data warehouses are also 

considered, including the price per 2-core pack for Windows Server Standard, the 

number of devices per server (CAL), and related licensing and infrastructure costs. 

These costs reflect the financial implications of deploying and maintaining data 

warehouse solutions. 

Calculation approach: 

To ensure an accurate comparison, the TCO Calculator estimates the total cost of ownership 

for deploying the 'Online Boutique' application, both on-premises and in Azure. The process 

involves the following steps: 

1. Define Workload: The current on-premises infrastructure for running the "Online 

Boutique" is detailed, including the number of servers, storage requirements, and 

network components. 

2. Customize Cost Inputs: Cost details for the on-premises setup, such as hardware 

purchase, maintenance, power, and cooling, are entered into the calculator. 

3. Review Azure Costs: The TCO Calculator estimates the equivalent costs on Azure, 

considering virtual machines, storage, networking, and additional services like Azure 

Kubernetes Service (AKS). 
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4. Analyse Results: The tool provides a detailed comparison, highlighting potential cost 

savings or increases over a specified period. This analysis helps in understanding the 

financial implications of migrating to Azure or maintaining an on-premises K3S setup. 

Objective of the methodology: 

The primary objective of using the TCO Calculator in this analysis is to establish a standardized 

methodology that can be applied to any market, application, or orchestration tool. While the 

specific cost figures are based on U.S. averages, the methodology itself is universal, allowing 

for its application in various contexts with appropriate adjustments. 

5.3.2. Comparative Cost Analysis 

This section outlines the comparative cost analysis between Azure Kubernetes Service (AKS) 

and K3S using the Total Cost of Ownership (TCO) Calculator provided by Microsoft Azure. 

The analysis is based on the inputs and assumptions defined in the TCO Calculator. 

Defining workloads 

The first step in the TCO Calculator is to define the workloads that will be used in the analysis. 

For this comparative study, the workloads represent the on-premises infrastructure that would 

be required to run the K3S cluster: 

1. Servers: 

a. Workload Type: Windows/Linux Server 

b. Environment: Virtual Machines 

c. Operating System: Linux 

d. VMs: 5 (three control plane nodes and two worker nodes for the K3S cluster) 

e. Virtualization: VMware 

f. Core(s): 2 per VM 

g. RAM (GB): 4 per VM, optimized by CPU 

2. Storage: 

a. The on-premises infrastructure uses a total of 250 GB SSD storage, divided 

across the five VMs. 

b. Backup: 250 GB for backup storage to ensure data integrity and recovery. 

c. Archive: 0 GB allocated for archiving, as this scenario does not include long-

term storage. 

d. IOPS: Input/Output Operations Per Second set to 0, reflecting a standard 

configuration without high-demand storage performance requirements. 
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3. Networking: 

a. Outbound bandwidth is set to 50 GB with the destination region specified as 

West Europe. This bandwidth allocation reflects the typical network traffic 

generated by the K3S cluster during normal operations. 

Adjusting assumptions 

After defining the workloads, the TCO Calculator allows for adjustments in various 

assumptions to better reflect the real-world conditions under which these platforms operate. 

1. Software Assurance Coverage: 

a. Disabled: Neither Windows Server nor SQL Server Software Assurance is 

enabled in this scenario, meaning Azure Hybrid Benefit (AHB) is not applied. 

This choice results in a more generalized cost estimate without the potential 

savings provided by AHB. 

2. Geo-Redundant Storage (GRS): 

a. Disabled: Data replication to a secondary region (GRS) is not enabled, which 

lowers storage costs but also reduces data redundancy. 

3. Virtual Machine Costs: 

a. The option to recommend cost-optimized virtual machines, such as the Bs-

series, is disabled. This setting ensures that the cost estimates are not influenced 

by specific VM recommendations, allowing for a broader and more applicable 

comparison. 

4. Electricity Costs: 

a. Set at $0.1334 per kWh, reflecting the average electricity cost in the U.S. This 

is an important factor in the total cost of ownership for on-premises 

infrastructure, as energy consumption directly impacts operational expenses. 

5. Storage Costs: 

a. Procurement Costs: 

b. SAN-SSD: $0.4 per GB 

c. SAN-HDD: $0.2 per GB 

d. NAS: $0.2 per GB 

e. Blob Storage: $0.2 per GB 

f. Annual Enterprise Storage Software Support Cost: 10% of the storage 

procurement costs. 
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g. Cost per Tape Drive: $160, though this is not directly applied in the current 

scenario. 

6. IT Labor Costs: 

a. Physical Servers per Administrator: 100 

b. Virtual Machines per Administrator: 120 

c. Hourly Rate for IT Administrator: $23, reflecting the average cost of IT labor 

in the U.S. 

7. Other Assumptions: 

a. Default Values: For other assumptions in the TCO model, including hardware 

costs, software costs, virtualization costs, data center costs, networking costs, 

database costs, and data warehouse costs, the default values provided by the 

TCO Calculator are used. These default values are industry-standard and 

provide a consistent basis for comparison. 

Report and results analysis 

After defining workloads and adjusting assumptions, the TCO Calculator generates a detailed 

report comparing the five-year total cost of ownership for on-premises K3S infrastructure 

versus on Azure. 

The report indicates that over five years, migrating from an on-premises K3S setup to Azure 

could result in savings of approximately $12,012.00. This is primarily due to Azure’s efficient 

infrastructure management, reduced data center costs, and lower IT labor requirements, as 

illustrated in Figure 22. 
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Figure 22. Total Cost of Ownership Over 5 Years: On-Premises vs. Azure. 

A breakdown of costs shows that on-premises expenses are primarily driven by compute 

(50%), data center (11%), and IT labor (34%). In contrast, Azure’s cost distribution shifts 

significantly, with compute at 30% and IT labor at 59%, while data center and networking costs 

are effectively eliminated due to Azure’s managed services. Total costs are shown in Figure 

23. 

 

Figure 23. Cost Distribution of On-Premises and Azure Infrastructure Over 5 Years. 
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A detailed breakdown highlights that the on-premises setup incurs higher expenses due to the 

need for physical infrastructure and significant IT labor costs are reported in Figure 24 Azure's 

cost efficiency stems from economies of scale and the reduction of direct management 

responsibilities through managed services. 

 

Figure 24. Detailed Cost Breakdown for On-Premises and Azure Over 5 Years 

This analysis looks at the direct migration of five virtual machines (VMs) from an on-premises 

environment to Azure, where each VM, including its compute, storage, and networking 

resources, is replicated in the cloud to mirror the original setup. 

However, using Azure's managed Kubernetes service (AKS) would significantly reduce costs. 

In AKS, the control plane is fully managed by Azure at no extra charge, so the main expenses 

come from the compute and storage needs of the worker nodes. This is different from the direct 

VM migration approach, where all VMs, including those for the control plane, need to be fully 

provisioned and billed. 

Leveraging AKS not only reduces management overhead but also takes advantage of Azure’s 

resource optimization for Kubernetes workloads. This approach is especially beneficial for 

long-term operational costs and scalability, where AKS offers greater efficiency compared to 

traditional VM-based deployments. 

Azure AKS Pricing Breakdown 

To further illustrate the cost-effectiveness of Azure, an additional pricing analysis was 

performed using the Azure Pricing Calculator for an AKS setup [37]. The AKS setup detailed 

below is the exact configuration used throughout this thesis to conduct performance testing, 

https://azure.microsoft.com/en-gb/pricing/calculator/
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cost analysis, and other comparative evaluations between Azure-based Kubernetes services and 

on-premises deployments. 

The AKS cluster was configured with the following parameters: 

• Region: West Europe 

• Cluster Management: Standard cluster management for 1 cluster, which is fully 

managed by Azure. 

• Nodes:  

o Operating System: Linux 

o Instance Series: Standard A2 v2 (2 vCPUs, 4GB RAM) 

o VMs: 2 nodes, each priced at $0.086/hour for a total of 730 hours/month. 

o OS Disks: Standard SSD (64GB) per node, priced at $4.80/month per disk. 

The estimated monthly cost for this AKS setup is $208.31, which translates to $12,498.60 over 

five years, as shown in Figure 25. 

 

Figure 25. Estimated Monthly Cost for Azure AKS Setup. 

In comparison, the cost of running the same five VMs directly in Azure for five years is 29% 

higher, totaling $16,123 as per the TCO report generated for the same workloads, as shown in 

Figure 26. 
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Figure 26. 5-Year Cost Comparison: AKS Setup vs. 5 VMs in Azure 

Cost savings strategies in Azure: 

Azure provides several options for reducing costs, making it an even more cost-effective 

platform for running Kubernetes workloads. 

• Pay-As-You-Go: The standard pay-as-you-go pricing for 2 VMs in an AKS cluster is 

$125.71 per month. This pricing model offers flexibility with no upfront commitment, 

making it suitable for workloads with unpredictable usage patterns.  

• Savings Plans: For example, a three-year savings plan for 2 VMs in an AKS cluster 

can reduce the monthly cost to $67.88, representing a 46% discount. The estimated 

monthly cost of this package, including cluster management and Managed OS Disks, 

is $149.92. Over a five-year period, this results in a total cost of $8,995.20. 

• Reservations: For example, a three-year reservation for 2 VMs in an AKS cluster can 

reduce the monthly cost to $47.77, representing a 62% discount. The estimated monthly 

cost of this package, including cluster management and Managed OS Disks, is $130.37. 

Over five years, this translates to a total cost of $7,822.20. 

 



80 

Cost Savings Strategies for K3S 

When deploying infrastructure on-premises, several strategies can be employed to optimize 

costs and ensure efficient use of resources. These strategies are crucial for managing expenses 

while maintaining the necessary performance and reliability. 

• Virtualization with Proxmox: Implementing virtualization platforms like Proxmox 

[38] can enhance resource utilization and reduce hardware costs. Proxmox is an open-

source platform that allows you to create and manage virtual machines efficiently, 

providing high availability, disaster recovery, and backup functionalities without the 

licensing fees associated with commercial hypervisors. This enables better 

consolidation of workloads onto fewer physical machines, thereby lowering power, 

cooling, and maintenance costs. 

• Energy-efficient hardware: Investing in energy-efficient servers and networking 

equipment can lead to substantial savings on power and cooling costs. Modern 

hardware often comes with features that optimize energy consumption, such as dynamic 

power scaling and efficient cooling systems. By selecting hardware with a favourable 

power-to-performance ratio, one can achieve significant long-term operational savings. 

• Open-source management tools: Utilizing open-source tools for system management, 

monitoring, and automation is another effective cost-saving strategy. Solutions like 

Ansible for configuration management, Prometheus for monitoring, and Grafana for 

visualization provide robust functionality without the licensing costs associated with 

commercial alternatives. These tools help maintain visibility and control over your 

infrastructure while keeping software costs to a minimum. 

5.3.3. Insights on On-Premises vs Cloud-Based Solutions 

A critical insight from this thesis is the potential benefits of using K3S in on-premises 

environments, particularly when an organization already has a significant investment in 

physical infrastructure. While the cost analysis in this study was based on a setup with only 

five VMs, it is important to recognize that as the scale of on-premises infrastructure increases, 

the relative cost-effectiveness of K3S improves significantly. If an organization has high server 

utilization, running K3S on-premises could lead to substantial savings compared to cloud-

based solutions like AKS. This is because the incremental cost of adding more VMs or utilizing 

more of the existing infrastructure is generally lower than the equivalent cost in a cloud 

environment, where pricing is based on usage. 



81 

For organizations with extensive on-premises resources, K3S does not only provide superior 

performance but also offers a way to maximize the value of existing hardware investments. 

This could make K3S a more economically viable option for large-scale or high-utilization 

scenarios, where the fixed costs of maintaining an on-premises data center are spread across a 

larger number of workloads. 
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6. Qualitative Analysis 

This chapter presents a qualitative analysis of Azure Kubernetes Service (AKS) and K3S, 

focusing on their implementation, configuration, deployment ease, management, security 

features and tools for monitoring. Additionally, the chapter will explore community support 

and the quality of documentation available for each platform. Each section will critically 

examine the differences between these platforms, offering insights into their suitability for 

different environments and use cases. 

6.1. Implementation and Configuration Differences 

The implementation and configuration of AKS and K3S reflect their distinct design 

philosophies and target environments. 

Initial Setup 

The setup process for AKS is designed to be user-friendly and streamlined, especially given its 

managed nature within the Azure ecosystem. One of the significant advantages of AKS is the 

ability to deploy it through Azure GUI, which makes the process even simpler and more 

intuitive for users. This graphical interface reduces the need for deep technical knowledge, 

allowing for rapid deployment with minimal manual intervention. Additionally, the use of 

Terraform scripts, which have been written and used in this master's thesis, automates much of 

the configuration, including resource provisioning, networking setup, and cluster identity 

management. This automation further simplifies the initial setup, making AKS a compelling 

choice for enterprises looking to deploy a robust Kubernetes cluster quickly and efficiently. 

In contrast, setting up K3S requires a more hands-on and technically involved approach. The 

process includes manually configuring virtual machines, setting up networking, and deploying 

the K3S binaries using tools like Ansible, with playbooks also developed and used in this thesis. 

Unlike AKS, where deployment can be done via a GUI, K3S setup is typically performed 

through the Linux terminal, adding a layer of complexity. While this approach offers greater 

flexibility, particularly in resource-constrained environments such as edge computing, it 

necessitates a deeper understanding of Kubernetes and the underlying infrastructure. K3S’s 

lightweight nature allows it to be deployed in environments where AKS might be too resource-

intensive, but this comes with the requirement for more technical expertise and manual 

configuration. 
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Customization 

AKS offers a range of built-in features that are pre-configured, such as integrated identity 

management, network policies enforced through Calico, and seamless integration with Azure 

services like Azure Active Directory and Azure Monitor. These pre-configured services 

enhance security, simplify management, and provide a consistent operational experience. 

However, they can also limit the extent of customization available to users. For instance, 

modifying default network configurations, integrating non-Azure services, or deploying 

specialized software may require additional configuration steps or might be constrained by 

Azure's proprietary ecosystem. Additionally, while AKS provides a streamlined experience, it 

also ties users to the Azure platform, making cross-cloud or hybrid configurations more 

challenging without significant workarounds. 

In contrast, K3S is designed with flexibility at its core, offering a high degree of customization. 

The absence of pre-configured services allows users to tailor the environment according to 

their specific requirements. For example, users can select from various Container Network 

Interface (CNI) plugins, such as Flannel or Calico, depending on their networking needs. 

Moreover, K3S’s lightweight architecture supports the deployment of custom monitoring 

solutions and the integration of third-party services without the restrictions imposed by a 

managed service like AKS. This flexibility is particularly advantageous in scenarios where 

bespoke configurations are necessary, such as specialized workloads, non-standard 

environments, or when integrating with a mix of on-premises and cloud-based systems. 

However, this customization comes with the trade-off of requiring more effort, expertise, and 

hands-on management. 

6.2. Ease of Deployment and Integrations 

The ease of deploying applications and integrating with other tools and services is generally 

similar between AKS and K3S, particularly in the context of deploying the 'Online Boutique' 

application.  

Deployment Process 

Deploying the "Online Boutique" application on both AKS and K3S follows a similar process, 

utilizing YAML manifests to configure and launch the microservices. These tools provide a 

consistent deployment experience across both platforms, enabling users to define and manage 

their applications declaratively. 
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In addition to YAML manifests for deploying the application, Helm is used in both 

environments to deploy essential system services, such as the kube-prometheus-stack, which 

includes Prometheus for monitoring and Grafana for visualization. This consistent approach 

across AKS and K3S ensures that the monitoring and management infrastructure is deployed 

in a standardized manner. 

However, there are distinctions in how each platform handles networking and service exposure. 

In AKS, the Azure Load Balancer is used as the service load balancer, providing a fully 

managed, scalable solution for exposing applications to external traffic. This integration with 

Azure’s cloud infrastructure simplifies the process of making services available over the 

internet, with built-in support for features like automatic scaling and SSL termination. 

In contrast, K3S uses a more lightweight approach with its built-in Klipper load balancer. 

Klipper allows K3S to expose applications on port 80, making it possible to serve applications 

directly without requiring an external load balancer. This feature is particularly advantageous 

in resource-constrained environments or edge computing scenarios, where a full-fledged cloud-

based load balancer might be unnecessary or impractical. Despite its simplicity, Klipper 

effectively handles the essential task of load balancing within a K3S cluster, providing a 

streamlined solution for service exposure. 

Integrations 

AKS is inherently designed for deployment in cloud environments, specifically within the 

Azure ecosystem. Its managed nature, along with deep integration with Azure services, makes 

it an excellent choice for organizations that are fully invested in Azure. AKS’s seamless 

integration with other Azure tools like Azure DevOps, Azure Security Center, and Azure Policy 

further strengthens its position as the go-to solution for cloud-native applications within this 

ecosystem. However, AKS’s close ties to Azure mean that it is less adaptable for on-premises 

or hybrid cloud environments unless these environments are heavily reliant on Azure’s 

infrastructure. While Azure Arc enables some hybrid cloud capabilities, deploying AKS 

outside of Azure requires significant additional configuration and may not offer the same level 

of support or performance. 

On the other hand, K3S stands out for its versatility across various environments. It is equally 

at home in cloud, on-premises, or hybrid deployments, making it a strong contender for 

organizations that need flexibility in where and how their Kubernetes clusters are deployed. 

K3S’s lightweight footprint and reduced system requirements make it particularly well-suited 



85 

for edge computing, IoT applications, and environments with limited resources. Furthermore, 

K3S can be integrated with various cloud services, including those from multiple providers, 

making it an ideal choice for multi-cloud or hybrid strategies. Although this requires more 

manual setup compared to AKS’s integrated approach, it provides organizations with the 

freedom to optimize their infrastructure across different platforms, choosing the best tools and 

services from each environment to meet their specific needs. 

Learning Curve 

The learning curve for AKS is generally lower, particularly for users already familiar with 

Azure services. The managed nature of the platform, along with its extensive documentation 

and community support, makes it easier to get started with Kubernetes deployments. 

K3S, while also supported by good documentation and a growing community, presents a 

steeper learning curve. The need for manual setup and configuration, combined with the 

flexibility it offers, means that users must have a deeper understanding of Kubernetes and the 

infrastructure it runs on. 

6.3. Management, Monitoring and Security Features 

The management and security features of AKS and K3S reflect their design priorities and 

intended use cases. 

Management 

Azure Kubernetes Service (AKS) leverages Azure's extensive ecosystem to provide robust 

management capabilities. Through Azure's native tools like Azure Monitor, Azure Policy, and 

Log Analytics, AKS offers a highly integrated management experience. These tools are 

designed to work seamlessly with AKS, allowing users to automate monitoring, scaling, and 

compliance tasks with ease. For organizations already embedded in the Azure ecosystem, this 

integration simplifies the management of Kubernetes clusters, enabling centralized control and 

streamlined operations. 

K3S, while equally capable of integrating with tools like Rancher, Grafana, and Prometheus, 

often requires a more hands-on approach to cluster management. Users need to set up and 

configure these tools manually, giving them the flexibility to tailor their management stack to 

the specific needs of their environment. This manual setup can be more time-consuming but 

offers greater customization. 
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Despite the availability of Rancher and Grafana on both platforms, AKS benefits from the 

managed nature of the Azure platform, where much of the heavy lifting such as cluster 

upgrades, scaling, and patching is handled automatically by Azure. In contrast, K3S places 

more responsibility on the user, requiring more direct management and configuration efforts to 

maintain the cluster. 

Monitoring  

Monitoring in AKS leverages the capabilities of the kube-prometheus-stack, which includes 

Prometheus and Grafana, to provide robust monitoring across the cluster. This setup is 

consistent across both AKS and K3S, allowing for comprehensive metric collection and real-

time visualization through customizable Grafana dashboards. In AKS, the integration with 

Azure's native tools, such as Azure Monitor and Log Analytics, further enhances the 

monitoring experience by offering advanced analytics and pre-configured alerts directly 

through the Azure portal. 

One of the key strengths of AKS lies in its alerting capabilities. Azure Monitor's built-in 

alerting features enable the creation of complex, rule-based alerts that can notify DevOps teams 

of potential issues before they escalate. These alerts can be configured to trigger on various 

conditions, such as high CPU usage, memory thresholds, or application errors, ensuring that 

potential problems are addressed promptly. 

In K3S, monitoring is also handled through the kube-prometheus-stack, providing the same 

foundational tools as in AKS Prometheus for data collection and Grafana for visualization. 

Although the setup in K3S requires more manual configuration, it offers flexibility in 

customizing the monitoring stack to fit specific needs, such as integrating additional exporters 

or customizing alert rules. 

Grafana's alerting capabilities are fully available in K3S as well, allowing for the creation and 

management of alerts based on the metrics collected by Prometheus. This means that you can 

set up alerting in K3S just as effectively as in AKS, using Grafana's interface to define alert 

conditions and receive notifications. However, since K3S does not have the same level of 

integrated cloud services as AKS, the configuration and management of these alerts are more 

manual, but this also allows for greater customization. 

Security Features 

Security in AKS is deeply integrated with Azure’s security framework, providing a 

comprehensive, managed security posture. This includes built-in support for Azure Active 
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Directory (AAD) for authentication, automated security updates, and native network policies 

enforced through Calico. Azure Security Center further enhances security by offering advanced 

threat protection and continuous security assessments, ensuring that AKS clusters adhere to 

best practices and regulatory requirements with minimal user intervention. 

One of the key advantages of AKS is its ease of updates. Azure handles Kubernetes version 

upgrades and patches automatically, minimizing the risk of human error and ensuring that 

clusters remain secure and up to date with the latest features and security fixes. This approach 

to updates is a significant benefit for organizations that prioritize operational efficiency and 

security. 

In contrast, K3S requires users to manually manage updates, which can add complexity and 

operational overhead, particularly in environments with multiple nodes. Each node must be 

individually updated to the new version of Kubernetes, which can be time-consuming and 

requires careful planning to avoid downtime or inconsistencies across the cluster. While this 

manual approach allows for greater control over the timing and process of updates, it also 

increases the complexity of maintaining a secure and up-to-date environment. 

Operational Overhead 

The operational complexity associated with AKS is generally lower, thanks to its managed 

nature within the Azure ecosystem. Azure handles critical operational tasks such as cluster 

scaling, security patching and network management. 

One of the standout features of AKS is its node pool scaling capability. AKS allows users to 

easily scale node pools up or down based on demand, with just a few clicks or through 

automated scaling rules. This ability to quickly adjust the size of the node pool without manual 

intervention is a significant advantage in dynamic environments where workload demands 

fluctuate. The automated management of node pools not only saves time but also ensures that 

resources are used efficiently, without the need for manual provisioning and configuration. 

K3S, in contrast, does not offer built-in node pool scaling. When additional capacity is needed 

in a K3S cluster, users must manually create new virtual machines, configure them with the 

necessary software, and join them to the cluster. This process, while offering granular control 

over the infrastructure, is considerably more labor-intensive and time-consuming compared to 

the automated scaling available in AKS. This increases the operational overhead in K3S 

environments, particularly in scenarios where scaling is required frequently or rapidly. 
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6.4. Documentation and Community Support 

The quality of documentation and community support plays a significant role in the usability 

and adoption of any platform, particularly in open-source technologies like Kubernetes. This 

section compares Azure Kubernetes Service (AKS) and K3S in terms of the support provided 

by their respective communities and the quality of available documentation. 

Documentation 

AKS benefits from comprehensive and professionally maintained documentation provided by 

Microsoft. The documentation is extensive, covering everything from initial setup to advanced 

configurations, integrations with other Azure services, and best practices for security and 

scalability. Microsoft's documentation is regularly updated in line with Azure's continuous 

delivery of new features and updates, ensuring that users have access to the latest information. 

Additionally, the integration of AKS with Azure’s managed services means that the 

documentation also covers related services like Azure Monitor, Azure Active Directory, and 

Azure Policy, providing a holistic guide to managing Kubernetes within the Azure ecosystem. 

K3S documentation, while not as extensive as AKS’s, is well-suited to its target audience of 

developers and operators working in specialized or resource-constrained environments. The 

official K3S documentation is concise and focused on getting users up and running quickly, 

reflecting the lightweight and simplified nature of K3S itself. However, for more complex 

scenarios or detailed explanations, users may need to rely on broader Kubernetes 

documentation or community-contributed guides and tutorials. This can make it more 

challenging for less experienced users to find the specific information they need, particularly 

for advanced configurations or troubleshooting.  

Community Support 

AKS benefits from being part of the broader Azure ecosystem, which includes a large and 

active community of cloud professionals, developers, and DevOps engineers. Microsoft 

actively supports this community through forums like Microsoft Q&A, GitHub discussions, 

and Azure-specific community events. The size and engagement of this community ensure that 

users can quickly find solutions to common problems, share best practices, and stay updated 

on the latest features and updates. Additionally, Microsoft’s official support channels, 

including Azure support plans, provide a reliable fallback for critical issues that require direct 

assistance. 
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K3S, has a growing and vibrant community, particularly among those working in edge 

computing, IoT, and resource-constrained environments. The community, primarily centred 

around the open-source ecosystem, is very active on platforms like GitHub, Rancher forums, 

and Kubernetes-specific Slack channels. While the community may not be as large as that of 

AKS, its members are typically very knowledgeable about Kubernetes and open-source 

technologies, which can lead to high-quality support and collaboration. However, K3S users 

may have to rely more on community support than formal channels, especially since K3S is 

often deployed in non-standard environments where specific issues may not have as much 

coverage in broader Kubernetes discussions. 
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7. Discussion 

This chapter presents a thorough analysis of the findings from the comparative study of Azure 

Kubernetes Service (AKS) and K3S. It is structured to assess the strengths and weaknesses of 

each platform across key criteria, offer recommendations for selecting the most suitable 

orchestration tool, and explore the implications for future work. To accommodate different 

reader preferences, the results are intentionally presented in various formats. Whether readers 

are looking for a high-level summary or a detailed analysis, this structure provides flexibility 

in how the information is accessed. Readers are encouraged to focus on the sections most 

relevant to their interests and can skip any subsections that offer alternative presentations of 

the same data. 

7.1. Summary of Findings 

This thesis has conducted an in-depth evaluation of AKS and K3S, focusing on key factors 

such as cost, performance, resource utilization, scalability, management complexity, and 

security. The findings highlight significant differences between these platforms, which are 

crucial for organizations when selecting a Kubernetes orchestration tool. 

Key Findings: 

1. Resource Utilization: 

a. AKS: Exhibits higher CPU and system load, largely due to additional 

operational and management containers required for cloud operations. 

However, it benefits from Azure’s resource optimization and scalability 

features. 

b. K3S: Demonstrates lower CPU and system load, making it more efficient in 

resource-constrained environments, such as edge computing or on-premises 

deployments. 

2. Performance analysis: 

a. AKS: While AKS provides adequate performance under various load 

conditions, it falls behind K3S in raw performance metrics. The additional 

overhead of managed services and cloud-specific components contributes to 

this gap. 



91 

b. K3S: K3S consistently outperforms AKS in all benchmark tests, including 

Apache AB, K6, and Sysbench, demonstrating superior CPU efficiency, lower 

latency, and higher throughput. 

3. Scalability and flexibility: 

a. AKS: Offers superior scalability with built-in autoscaling and seamless 

integration with Azure services. This makes it the better option for applications 

requiring rapid scaling and dynamic resource management. 

b. K3S: While highly flexible and customizable, K3S requires manual intervention 

for scaling, which can increase operational complexity but offers greater control 

over the environment. 

4. Cost Analysis: 

a. AKS: The total cost of deploying and running an application on AKS over a 

five-year period is significantly lower, at $12,498.60, compared to $28,135 for 

K3S. This cost advantage is primarily due to Azure's managed services, which 

reduce operational overhead and optimize resource allocation. 

b. K3S: The higher cost associated with K3S is due to the need for on-premises 

infrastructure, manual management, and higher resource utilization. Despite 

this, K3S offers superior performance, which may justify the higher expenditure 

in performance-critical scenarios. 

5. Ease of deployment and integration: 

a. AKS: Simplifies deployment through Azure’s GUI and Terraform scripts, 

making it accessible even to teams with limited Kubernetes expertise. It also 

integrates seamlessly with Azure’s cloud services. 

b. K3S: Requires a more manual setup process, which can be complex but offers 

greater flexibility in customization. This makes it ideal for environments where 

specific configurations are necessary, such as on-premises or edge deployments. 

6. Security and management complexity: 

a. AKS: Integrated with Azure’s security framework, including Azure Active 

Directory and Azure Security Center, AKS provides a managed, comprehensive 

security posture. It also benefits from lower management complexity due to 

automated updates and scaling. 

b. K3S: Requires more hands-on management for security configurations, 

increasing the operational overhead. However, its open-source nature allows for 

greater customization and integration with third-party security tools. 
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7.2. Comparative strengths and Weaknesses of Each Tool 

This section evaluates the strengths and weaknesses of AKS and K3S based on the 

comprehensive data gathered during this study. 

Azure Kubernetes Service (AKS) 

Strengths: 

• Cost-effective in cloud environments: AKS provides significant cost savings through 

its integration with Azure’s managed services, particularly when leveraging Azure’s 

pricing models like Reserved Instances and Spot VMs. This makes AKS an attractive 

option for organizations looking to optimize their cloud spending while maintaining 

robust Kubernetes operations. 

• Ease of management: One of the standout features of AKS is its ease of management, 

particularly through automated processes such as scaling, security patching, and 

updates. This reduces the need for extensive in-house Kubernetes expertise and allows 

organizations to focus more on application development and less on infrastructure 

management. 

• Scalability: AKS’s built-in autoscaling capabilities are invaluable for applications that 

experience varying workloads, providing seamless scalability that adjusts dynamically 

to meet demand without requiring manual intervention. 

• Security: AKS benefits from deep integration with Azure’s security tools, including 

Azure Active Directory, Azure Security Center, and built-in compliance checks. This 

comprehensive security framework ensures that AKS deployments are secure by 

default, reducing the risk of vulnerabilities and improving overall compliance. 

Weaknesses: 

• Performance overhead: AKS introduces additional overhead due to its managed 

services, which can result in lower performance compared to K3S in certain scenarios. 

For applications where maximum throughput and minimal latency are critical, this can 

be a disadvantage. 

• Complexity in cross-cloud and hybrid deployments: AKS can be challenging to 

integrate into multi-cloud or hybrid cloud environments where resources span across 
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different cloud providers. This limitation could complicate deployments for 

organizations pursuing a multi-cloud strategy. 

K3S 

Strengths: 

• Superior performance: K3S consistently outperforms AKS in all benchmark tests, 

making it a better choice for performance-critical applications. Its lightweight 

architecture and efficient resource utilization enable it to handle higher workloads with 

lower latency. 

• Resource efficiency: K3S’s low resource consumption makes it ideal for environments 

with limited capacity. Its ability to operate efficiently on less powerful hardware is a 

significant advantage in resource-constrained settings.  

• Flexibility and customization: K3S offers a high degree of flexibility, allowing users 

to tailor the environment to their specific needs. This is particularly beneficial in 

specialized environments such as edge computing, IoT, or on-premises deployments. 

Weaknesses: 

• Higher cost in on-premises deployments: The cost of running K3S in an on-premises 

environment is significantly higher than AKS, primarily due to the need for physical 

infrastructure, manual management, and higher resource utilization. 

• Complex management: K3S requires more hands-on management, including manual 

updates and scaling. This increases the operational complexity and may necessitate a 

higher level of expertise from the IT staff. 

• Limited built-in security: Unlike AKS, which benefits from Azure’s managed security 

features, K3S requires manual configuration of security protocols. This adds to the 

management overhead and increases the risk of misconfigurations. 
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Table 20. Detailed Comparative Analysis of Azure Kubernetes Service (AKS) and K3S Based on Criteria 

Criteria AKS K3S Winner 

Resource Utilization 

(Idle State) 

Higher CPU and System 

Load (42.3% CPU, 

99.5% Load) 

Lower CPU and System 

Load (12.5% CPU, 17.5% 

Load) 

K3S 

Performance (Apache 

AB Test) 

34 requests/s, 29.413 

ms/request 

109.44 requests/s, 9.137 

ms/request 

K3S 

Performance (K6 

Test) 

22.24 requests/sec, 13.22 

s/request 

109.92 requests/sec, 1.57 

s/request 

K3S 

Performance 

(Sysbench CPU 

Speed) 

8050.65 events/s 20219.14 events/s K3S 

Cost (5-Year Total) $12,498.60 $28,135.00 AKS 

Implementation and 

Configuration 

Easy with GUI and 

Terraform scripts, 

integrated with Azure 

Hands-on, manual setup 

with more flexibility 

AKS (Ease); 

K3S (Flexibility) 

Ease of Deployment 

and Integrations 

Seamless Azure 

integration, GUI-based 

deployment 

Flexible, supports diverse 

environments, manual 

setup 

AKS (Ease); 

K3S (Versatility) 

Management 

Complexity 

Lower - automated 

updates and scaling 

Higher - manual updates 

and scaling 

AKS 

Scalability High - built-in 

autoscaling 

Medium - requires manual 

intervention 

AKS 

Flexibility and 

Customization 

High - Azure-centric 

with extensive options 

High - open-source and 

flexible 

Tie 

Security Integrated with Azure 

Security, automated 

patches 

Manual security 

configurations, higher 

overhead 

AKS 

Documentation and 

Community Support  

Extensive, backed by 

Microsoft, large 

community 

Growing, focused 

community, strong in edge 

computing 

AKS 
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Overall Winner AKS (6/13 criteria) K3S (4/13 criteria) AKS Wins 

 

While AKS stands out as the overall winner, the choice between AKS and K3S ultimately 

depends on the specific use case and the expertise of the DevOps team. AKS offers greater ease 

of deployment, integrated management, and strong Azure service integration, making it 

suitable for teams working within the Azure ecosystem. On the other hand, K3S excels in 

performance, resource efficiency, and flexibility, particularly in smaller, resource-constrained 

environments or edge computing scenarios. The right platform should be selected based on the 

project's needs and operational expertise, as outlined in the detailed comparative analysis 

shown in Table 20. 

7.3. Recommendations for Selecting an Orchestration Platform 

When deciding between AKS and K3S, organizations should carefully consider their specific 

needs, strategic goals, existing infrastructure and team expertise. Below are recommendations 

tailored to different scenarios: 

When to choose AKS: 

• Cloud-native applications: For organizations deeply integrated with Azure, AKS is 

the logical choice due to its seamless integration with Azure services, which simplifies 

deployment and management. This is particularly advantageous for teams already 

utilizing other Azure services, as it creates a cohesive ecosystem with centralized 

management and support. 

• Ease of management: AKS is ideal for organizations looking to reduce operational 

overhead. The platform’s managed services automate many routine tasks, such as 

scaling and security patching, freeing up IT resources to focus on more strategic 

initiatives. 

• Cost efficiency: AKS is more cost-effective for cloud deployments, especially when 

considering Azure’s flexible pricing models, such as Reserved Instances and Spot VMs. 

For organizations looking to minimize long-term costs while benefiting from robust 

infrastructure, AKS presents a compelling option. 
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• Scalability needs: If an organization’s workload is expected to fluctuate significantly, 

AKS’s autoscaling capabilities ensure that resources are allocated dynamically and 

efficiently, avoiding both underutilization and overprovisioning. 

When to choose K3S: 

• Performance-critical applications: K3S excels in environments where performance 

is paramount. Its superior benchmarks in throughput and latency make it a better choice 

for applications requiring high performance, such as real-time data processing, IoT, and 

edge computing. 

• Customization and flexibility: K3S is ideal for organizations that need a high degree 

of customization in their Kubernetes environment. Whether for specialized workloads 

or unique operational requirements, K3S’s open-source flexibility allows for tailored 

configurations that might not be possible with a more managed solution like AKS. 

• On-premises and edge deployments: For deployments outside the cloud, particularly 

in on-premises data centers or at the edge, K3S’s lightweight architecture and efficient 

resource usage make it a strong candidate. It is well-suited for environments where 

cloud resources are not feasible or where local processing power is critical. 

• Existing infrastructure: If an organization already has significant on-premises 

infrastructure, the higher initial and operational costs of K3S might be offset by its 

performance benefits and the ability to integrate with existing systems. K3S’s 

performance gains can justify the investment in these scenarios, particularly when high 

throughput and low latency are required. 

7.4. Gartner Magic Quadrant for Container Management 

As part of this analysis, it's important to consider the broader industry context in which AKS 

operates. Microsoft’s Azure Kubernetes Service has been recognized as a Leader in the 2023 

Gartner Magic Quadrant for Container Management, as shown in Figure 27 [39]. 
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Figure 27. Magic Quadrant for Container Management. Source: [39]. 

The Gartner Magic Quadrant for Container Management is a significant industry benchmark 

that evaluates vendors based on their ability to execute and the completeness of their vision. 

Microsoft’s position as a Leader, alongside other industry giants like Google, Amazon Web 

Services and Red Hat underscores its strong market presence and the robust capabilities of 

AKS. 

In contrast, K3S, while highly capable, is positioned differently in the market as a product 

developed by Rancher Labs (part of the SUSE ecosystem) which Gartner places in the 

"Challengers" quadrant. This positioning reflects SUSE’s solid ability to execute but a less 

complete vision compared to leaders like Microsoft. However, for specific use cases such as 

on-premises or edge computing, K3S remains a powerful and flexible tool, even if it does not 

have the same broad market penetration or recognition as AKS. 

In addition to Azure Kubernetes Service (AKS) and K3S, it is important to consider other 

popular container orchestration tools that excel in different deployment environments. Among 



98 

these, Amazon Web Services (AWS) and OpenShift are two key players in the Kubernetes 

space. AWS EKS is widely adopted for its extensive cloud-native capabilities, while OpenShift 

is recognized for its hybrid and on-premises solutions. By comparing these tools with AKS and 

K3S, we can better understand how each platform fits into various cloud and on-premises 

deployment scenarios. 

Amazon Web Services (AWS) 

AWS, through its Elastic Kubernetes Service (EKS), is also a Leader in the container 

management space. Like AKS, AWS EKS offers seamless cloud integration and managed 

services, making it an ideal choice for enterprises fully committed to cloud-based 

infrastructure. In comparison to AKS, AWS EKS provides similar capabilities but stands out 

for its vast ecosystem and flexibility in deploying services across AWS's extensive global 

infrastructure.  

OpenShift (Red Hat Kubernetes Platform) 

OpenShift, recognized as a Leader for its hybrid and multi-cloud Kubernetes capabilities, offers 

a powerful on-premises solution. Compared to AKS, which is tightly integrated into the Azure 

ecosystem, OpenShift offers broader flexibility in managing Kubernetes clusters across 

multiple environments. For enterprises looking for a robust, on-premises solution with strong 

developer tools, OpenShift stands out. Compared to K3S, OpenShift is more enterprise-

focused, offering additional features like integrated CI/CD pipelines and developer workflows, 

but it comes with a higher resource and operational overhead, making it more suitable for larger 

deployments. 
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8. Conclusion 

This thesis conducted an extensive comparison between Azure Kubernetes Service (AKS) and 

K3S to determine their suitability for orchestrating a medium complexity microservices 

application, exemplified by the "Online Boutique" application. The aim was to provide a 

thorough understanding of how each platform performs in both cloud and on-premises 

environments, particularly in terms of performance, cost, management complexity, and 

scalability. 

The study's quantitative analysis demonstrated distinct differences between the two platforms. 

AKS, deeply integrated with the Azure ecosystem, showed significant cost advantages over a 

five-year period when compared to K3S, particularly in a scenario involving only five virtual 

machines (VMs). This cost-efficiency stems from Azure's managed services, which reduce the 

operational overhead and optimize resource allocation. The total cost of ownership for AKS 

was markedly lower at $12,498.60, compared to $28,135 for K3S. 

However, K3S outperformed AKS in all key performance benchmarks, including CPU speed, 

memory transfer rate, and request-handling capabilities. K3S's lightweight architecture allowed 

it to deliver superior throughput and lower latency, making it the better choice for performance-

critical applications. The analysis also showed that K3S has a lower CPU and system load in 

idle states, which is advantageous for resource-constrained environments. This performance 

difference is also influenced by the hardware and virtualization factors, such as K3S’s larger 

L2 cache, optimized CPU architecture, and lower hypervisor overhead compared to AKS. 

The qualitative comparison further illuminated the strengths and weaknesses of each platform. 

AKS was noted for its ease of management, particularly in cloud environments, where its 

automated updates, built-in security features, and seamless integration with Azure services 

simplified operations. This makes AKS an attractive option for organizations looking to 

minimize their operational overhead and focus on application development. 

On the other hand, K3S excelled in flexibility and customization. Its open-source nature allows 

for a high degree of tailoring, making it ideal for on-premises deployments or edge computing 

scenarios where specific configurations are necessary. K3S's ability to run efficiently on less 

powerful hardware also makes it suitable for environments with limited resources. 
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8.1. Comprehensive Comparison and Final Recommendations 

The findings of this thesis suggest that the choice between AKS and K3S should be guided by 

an organization’s specific needs and existing infrastructure: 

• For cloud-native applications or organizations heavily invested in the Azure 

ecosystem, AKS is the preferred choice. It offers significant cost savings, ease of 

management, and seamless integration with other Azure services. Its built-in 

scalability and security features make it a robust option for enterprises looking to 

leverage the full potential of cloud infrastructure without the need for extensive in-

house Kubernetes expertise. 

• For performance-critical applications or organizations with significant on-

premises infrastructure, K3S is the superior choice. Its lightweight architecture 

and efficient resource utilization allow it to deliver better performance, especially 

in scenarios requiring high throughput and low latency. Moreover, for organizations 

with high server utilization, K3S could be more cost-effective, as it maximizes the 

use of existing physical infrastructure. 

In conclusion, this thesis has provided a detailed comparison of AKS and K3S, offering 

valuable insights into their strengths and weaknesses. The decision between these two 

platforms should be made based on a thorough understanding of an organization’s current 

infrastructure, strategic goals, and specific application requirements. Whether optimizing for 

cost, performance, or operational simplicity, this analysis serves as a comprehensive guide to 

selecting the optimal Kubernetes orchestration tool for diverse deployment environments. 

Additionally, this thesis makes several significant contributions: 

• Documented Deployment Process and Code: A fully documented process and code 

for deploying a microservices-based application using both AKS and K3S, available 

via GitHub repository and accompanied by step-by-step instructions. 

• Benchmark Tests and Results Interpretation: Detailed benchmark tests were 

conducted, including Apache AB, K6, and Sysbench, with comprehensive analysis and 

interpretation of the results. 

• Qualitative Comparison: An in-depth comparison of key orchestration tool properties, 

such as resource utilization, performance, cost, and scalability. 



101 

• Cost Analysis Methodology: A clear methodology for conducting cost analysis, 

comparing the total cost of ownership (TCO) between AKS and K3S, highlighting cost-

saving strategies for both cloud-based and on-premise solutions. 

• Recommendations for Selection: Clear recommendations for choosing between AKS 

and K3S based on specific application needs, infrastructure, and goals. 

8.2. Implications for Future Work 

The comparative analysis of AKS and K3S reveals several areas where further research and 

development could provide additional value to organizations, particularly as the landscape of 

Kubernetes and cloud computing continues to evolve. 

Exploration of cost optimization: 

Additional studies should focus on further optimizing costs within AKS, such as exploring the 

use of Azure’s Spot VMs, Reserved Instances, or hybrid benefit programs. Understanding how 

to maximize cost savings while maintaining performance could help organizations make more 

informed decisions about their cloud strategies. 

For K3S, cost optimization efforts could examine how organizations can leverage synergies 

with their existing infrastructure, including the use of existing on-premise hardware, energy-

efficient configurations, and virtualization solutions like Proxmox. Exploring opportunities to 

reduce operational overhead by automating management tasks and optimizing resource 

allocation in K3S clusters would further enhance the cost-effectiveness of on-premise 

deployments. 

Long-term performance studies: 

Conducting longitudinal studies that evaluate the performance of AKS and K3S over extended 

periods and under varied workloads would provide valuable insights into their long-term 

viability. Such research would be particularly beneficial for understanding how each platform 

handles scaling, resource allocation, and overall cost-efficiency in real-world scenarios. 

Hybrid and multi-cloud strategies: 

Future research should explore how AKS and K3S can be integrated within hybrid or multi-

cloud architectures. Leveraging AKS for cloud-native workloads while deploying K3S in on-

premises or edge environments could offer a balanced approach, combining the strengths of 



102 

both platforms. Such strategies would allow organizations to maintain flexibility, optimize 

costs, and ensure that applications are deployed in the most suitable environment. 

Security and compliance enhancements: 

As security remains a top priority for organizations, future work should focus on enhancing the 

security features of K3S, possibly through automation or integration with enterprise-grade 

security tools. This would make K3S more attractive to organizations with stringent security 

and compliance requirements, particularly in regulated industries. 
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