

University Graduate Program in Informatics

Antonio Janach

Comparison of Orchestration Systems

for Microservices Applications
Master’s Thesis

Mentor: adj. assist. prof. dr. Rok Piltaver

Co-mentor: prof. dr. Sanda Martinčić-Ipšić

Rijeka, September 2024

Radmile Matejčić 2, T: +385 (0)51/584-700 OIB: 64218323816

51000 Rijeka, Hrvatska E: ured@inf.uniri.hr IBAN: HR1524020061400006966

 www.inf.uniri.hr

Rijeka, 14.5.2024.

Zadatak za diplomski rad

Pristupnik: Antonio Janach

Naziv diplomskog rada: Usporedba sustava za orkestraciju mikrouslužnih aplikacija

Naziv diplomskog rada na eng. jeziku: Comparison of Orchestration Systems for Microservices

Applications

Sadržaj zadatka:

Cilj ovog diplomskog rada je provesti detaljnu usporedbu različitih alata za orkestraciju, uključujući

Azure Kubernetes Service, K3S i OpenShift. Usporedba će se temeljiti na studiji slučaja orkestriranja

mikroservisne aplikacije srednje složenosti koja se sastoji od 5 do 20 mikroservisa. Usporedit će se

barem dva alata za orkestraciju, jedan koji podržava lokalno okruženje (on-premises) i drugi koji

podržava rješenje "u oblaku" (cloud). Kvantitativna usporedba će se fokusirati na performanse i

isplativost. Mjerenja će biti provedena na infrastrukturi s identičnim resursima, uključujući broj

procesora (vCPU), količinu radne memorije (RAM), kapacitet i tip diskova, te broj klastera povezanih

s kontrolnom ravninom i radnim čvorovima.

Kvalitativna usporedba identificirat će i analizirati razlike u implementaciji, konfiguraciji,

jednostavnosti implementacije i integracijama, upravljanju, sigurnosti i drugim značajkama ovih

sustava. Nadalje, istražit će se dostupni alati i tehnike za praćenje performansi i optimizaciju klastera

u svakom okruženju. Također, usporedit će se dostupnost i kvaliteta službene podrške te korisnost

povezanih online zajednica.

Dva glavna rezultata bit će formalni proces za odabir optimalne orkestracijske platforme i

sveobuhvatna usporedba proučenih alata za orkestraciju specifične mikroservisne aplikacije.

Optimalni alat za orkestraciju bit će odabran na temelju izmjerenih podataka i analize prikupljenih

informacija.

Radmile Matejčić 2, T: +385 (0)51/584-700 OIB: 64218323816

51000 Rijeka, Hrvatska E: ured@inf.uniri.hr IBAN: HR1524020061400006966

 www.inf.uniri.hr

Sadržaj zadatka na eng. jeziku:

The aim of this thesis is to conduct a detailed comparison of different orchestration tools such as

Azure Kubernetes Service, K3S or OpenShift. The comparison will be based on a case-study of

orchestrating a microservices application of medium complexity consisting of 5 to 20 microservices.

At least two orchestration tools will be compared, one supporting on-premises and the other

supporting a cloud environment. Quantitative comparison will focus on performance and cost-

effectiveness. Measurements will be conducted on infrastructure with identical resources, including

the number of processors (vCPU), amount of memory (RAM), capacity and type of system disk, and

the number of clusters related to the control plane and worker nodes.

Qualitative comparison will identify and analyse differences in implementation, configuration, ease

of deployment and integrations, management, security, and other features of these systems.

Furthermore, available tools and techniques for monitoring performance and optimizing clusters in

each environment will be explored. Additionally, the availability and quality of official support and

usefulness of related online communities will be compared.

The two main results will be a formal process for selecting the optimal orchestration platform and a

comprehensive comparison of the studied orchestration tools for the specific microservices

application. The optimal orchestration tool will be selected based on the measured data and analysis

of the collected information.

Mentor:

nasl. doc. dr. sc. Rok Piltaver

Komentor:

Prof. dr. sc. Sanda Martinčić-Ipšić

Voditeljica za diplomske radove:

Prof. dr. sc. Ana Meštrović

Zadatak preuzet: 14.5.2024.

Antonio Janach

1

Preface

The completion of this thesis would not have been possible without the support and

encouragement of several important people in my life.

First and foremost, I dedicate this work to my parents, whose unwavering support and belief

in me have been the foundation of my achievements. I am deeply grateful to my grandparents

for their wisdom and life lessons that have guided me throughout my journey. To my partner,

Mia, your love, patience, and understanding have been my strength, motivating me to push

forward even during the most challenging times.

I also wish to thank my faculty professors, colleagues, and mentor, whose guidance and

knowledge have significantly shaped my academic growth. Their dedication to teaching and

their passion for the subject matter have been a constant source of inspiration. A special

thanks to my mentors for their insightful guidance and unwavering support throughout this

process.

I am also deeply appreciative of Ivica, my leader at work, who provided me with the

opportunity to work with these cutting-edge technologies. Your trust and guidance have been

instrumental in my professional development. Additionally, I am grateful to SICK Mobilisis

for providing the resources necessary to work on this thesis, enabling me to explore and

deepen my understanding of these advanced technologies.

This thesis is a testament to the collective support and encouragement of those who have

stood by me. Thank you all for being a part of this journey.

2

Abstract

This thesis provides a comprehensive comparison of Kubernetes orchestration tools,

specifically focusing on Azure Kubernetes Service (AKS) and K3S, to determine their

suitability for orchestrating a medium complexity microservices application, exemplified by

the "Online Boutique" application, which consists of 15 containers. The analysis compares

one tool supporting on-premises environments (K3S) with another designed for cloud

environments (AKS), emphasizing performance, cost-effectiveness, management

complexity, and scalability.

The quantitative analysis was conducted on infrastructure with identical resources, including

CPU, memory, and storage, to ensure a fair comparison. AKS demonstrated significant cost

advantages over a five-year period, largely due to its integration with the Azure ecosystem,

which optimizes resource allocation and reduces operational overhead. However, K3S

consistently outperformed AKS in key performance metrics, including CPU speed, memory

transfer rate, and request-handling capabilities. These performance differences are partly due

to the additional load created by the hypervisor and the extra cloud-specific services running

within the AKS cluster.

The qualitative analysis identified differences in implementation, configuration, ease of

deployment, integration, and management. AKS excels in cloud environments due to its

automated management and seamless integration with Azure, making it suitable for

organizations looking to minimize operational overhead. In contrast, K3S offers greater

flexibility and customization, particularly for on-premises deployments or scenarios

requiring specific configurations. Additionally, K3S is suitable for organizations with

existing on-premises infrastructure.

Keywords: Kubernetes, Azure Kubernetes Service, AKS, K3S, microservices, cloud

computing, on-premises, container orchestration, performance analysis, cost-effectiveness.

3

Usporedba sustava za orkestraciju mikrouslužnih

aplikacija

Sažetak

Ovaj diplomski rad pruža sveobuhvatnu usporedbu Kubernetes alata za orkestraciju, s

posebnim naglaskom na Azure Kubernetes Service (AKS) i K3S, u svrhu utvrđivanja

njihove prikladnosti za orkestriranje aplikacija srednje složenosti, pri čemu je korištena

"Online Boutique" aplikacija koja se sastoji od 15 kontejnera. Analiza uspoređuje jedan alat

koji podržava lokalna okruženja (K3S) s drugim dizajniranim za okruženja u oblaku (AKS),

s naglaskom na performanse, isplativost, složenost upravljanja i skalabilnost.

Kvantiativna analiza provedena je na infrastrukturi s identičnim resursima, uključujući

procesor, memoriju i pohranu, kako bi se osigurala pravedna usporedba. AKS je pokazao

značajne prednosti u troškovima tijekom petogodišnjeg razdoblja, uglavnom zbog

integracije s Azure ekosustavom, što optimizira alokaciju resursa i smanjuje operativno

opterećenje. Međutim, K3S je u svim ključnim performansama nadmašio AKS, uključujući

brzinu procesora, brzinu prijenosa memorije i sposobnost obrade zahtjeva. Ove razlike u

performansama djelomično su uzrokovane dodatnim opterećenjem koje stvaraju hipervizor

i dodatni servisi specifični za okruženje u oblaku unutar AKS klastera.

Kvalitativna analiza identificirala je razlike u implementaciji, konfiguraciji, lakoći

postavljanja, integraciji i upravljanju. AKS se ističe u okruženjima u oblaku zahvaljujući

automatiziranom upravljanju i besprijekornoj integraciji s Azureom, čime je prikladan za

organizacije koje žele minimizirati operativno opterećenje. Nasuprot tome, K3S nudi veću

fleksibilnost i prilagodljivost, osobito za lokalne implementacije ili scenarije koji zahtijevaju

specifične konfiguracije. Dodatno, K3S je prikladan za organizacije koje već imaju

postojeću on-prem okruženje.

Ključne riječi: Kubernetes, Azure Kubernetes Service, AKS, K3S, mikroservisi,

računarstvo u oblaku, lokalno okruženje, orkestracija kontejnera, analiza performansi,

isplativost.

4

Table of Contents

1. Introduction ... 1

1.1. Background and Motivation .. 1

1.2. Objectives of the Thesis .. 3

1.3. Limitation .. 4

1.4. Structure of the Thesis ... 5

2. Theoretical Background .. 7

2.1. Microservices Architecture ... 7

2.1.1. Definition and Principles ... 7

2.1.2. Benefits and Challenges of Microservices Architecture 10

2.2. Kubernetes - Orchestration Tool ... 11

2.2.1. Orchestration Tools in General.. 11

2.2.2. Overview of the Kubernetes Orchestration Tool ... 14

2.3. Overview of Selected Orchestration Tools .. 18

2.3.1. Azure Kubernetes Service (AKS).. 18

2.3.2. K3S .. 19

3. Case Study Design ... 22

3.1. Description of the Microservices Application ... 22

3.1.1. Application Architecture ... 22

3.1.2. Functional and Non-functional Requirements ... 24

3.2. Experimental Setup ... 26

3.2.1. Infrastructure Specifications .. 26

3.2.2. Platform Infrastructure Elements... 28

3.2.3. Deployment Scenarios ... 29

3.2.4. Testing Methodology ... 29

4. Implementation and Deployment .. 31

5

4.1. Deploying Application on Azure Kuberentes Service (AKS) 31

4.1.1. Configuration and Setup of Infrastructure ... 31

4.1.2. Deployment Process of Application Services ... 35

4.1.3. Deployment Process of System Services .. 36

4.1.4. Challenges and Solutions .. 37

4.2. Deploying on K3S ... 40

4.2.1. Configuration and Setup of Infrastructure ... 40

4.2.2. Deployment Process of Application Services ... 44

4.2.3. Deployment Process of System Services .. 45

4.2.4. Challenges and Solutions .. 45

5. Performance and Cost Analysis ... 47

5.1. Resource Utilization .. 47

5.1.1. Comparison of Pods and Containers ... 47

5.1.2. CPU and Memory Usage ... 48

5.1.3. Storage and Network Performance .. 49

5.2. Benchmark Results .. 52

5.2.1. Apache AB Results .. 53

5.2.2. K6 Results ... 57

5.2.3. System Benchmarking Results .. 65

5.3. Cost Analysis ... 70

5.3.1. Cost Calculation Methodology .. 71

5.3.2. Comparative Cost Analysis ... 73

5.3.3. Insights on On-Premises vs Cloud-Based Solutions 80

6. Qualitative Analysis .. 82

6.1. Implementation and Configuration Differences .. 82

6.2. Ease of Deployment and Integrations .. 83

6

6.3. Management, Monitoring and Security Features .. 85

6.4. Documentation and Community Support .. 88

7. Discussion .. 90

7.1. Summary of Findings .. 90

7.2. Comparative strengths and Weaknesses of Each Tool .. 92

7.3. Recommendations for Selecting an Orchestration Platform 95

7.4. Gartner Magic Quadrant for Container Management.. 96

8. Conclusion ... 99

8.1. Comprehensive Comparison and Final Recommendations 100

8.2. Implications for Future Work .. 101

References ... 103

List of Tables ... 107

List of Figures .. 108

List of Codes .. 110

Appendix ... 111

1

1. Introduction

The advent of microservices architecture has transformed the way modern applications are

designed and deployed. Microservices offer exceptional flexibility and efficiency by breaking

down applications into smaller, independent services that can be developed, deployed, and

scaled individually. However, managing these microservices, especially at scale, introduces

significant complexity. Orchestration tools like Azure Kubernetes Service (AKS) and K3S

have emerged as vital technologies to address these challenges, providing robust solutions for

deploying, scaling, and operating containerized applications [1].

This thesis aims to conduct a detailed comparison of various orchestration tools, specifically

focusing on AKS and K3S. The comparison is grounded in a case study involving the

orchestration of a microservices application of medium complexity. Strengths and weaknesses

of each tool are identified in both on-premises and cloud infrastructure deployment

environments by examining quantitative and qualitative aspects. The goal is to provide

methodology for a comprehensive analysis that can guide organizations in selecting the most

suitable orchestration platform for their specific needs.

1.1. Background and Motivation

The rapid advancement of technology has led to the widespread adoption of microservices

architectures. These architectures offer significant benefits, such as scalability, maintainability,

and agility. Unlike monolithic architectures, where all components are interdependent,

microservices break down applications into smaller, independent services [2]. These services

can be developed, deployed, and scaled individually, allowing for greater flexibility and faster

iteration. This modular approach enables organizations to respond more quickly to changing

business requirements and market demands.

Containers have become essential for implementing microservices architectures. They provide

a lightweight, portable, and consistent environment for running applications, regardless of the

underlying infrastructure [3]. By encapsulating an application and its dependencies into a single

package, containers ensure that microservices can be deployed and run reliably across different

environments. This isolation enhances security and simplifies the process of scaling and

managing applications.

2

However, managing these microservices efficiently poses substantial challenges. The

complexity of orchestrating multiple services, ensuring their seamless interaction, and

maintaining their health and performance can be daunting without the right tools and strategies.

Orchestration tools have emerged as essential components for managing the deployment,

scaling, and operation of containerized applications in distributed environments. These tools

provide a framework for automating the deployment, scaling, and operation of application

containers across clusters of hosts [3]. They offer built-in mechanisms for service discovery,

load balancing, and automated rollouts and rollbacks.

Microservices applications can be deployed in one of three environments: cloud, on-premises,

or hybrid. Each environment presents unique challenges and opportunities for orchestration.

Organizations are increasingly adopting cloud-native technologies to leverage the flexibility

and scalability of cloud environments [1]. Cloud-native applications are designed to fully

exploit the advantages of the cloud computing model, such as elastic scalability, resilience, and

the ability to run applications in a highly distributed manner.

Simultaneously, many enterprises maintain on-premises infrastructure to meet specific

regulatory, performance, or cost requirements. Regulatory requirements may mandate that

certain data must remain on-premises, while performance considerations may require low-

latency access to data and services. Cost constraints can also play a role, as maintaining on-

premises infrastructure may be more economical for certain workloads.

To address these diverse requirements, a hybrid approach, combining on-premises and cloud

environments, is often necessary. Hybrid deployments enable organizations to leverage the

benefits of both environments, providing the flexibility to optimize resources, meet compliance

requirements, and achieve cost efficiencies [4]. By seamlessly integrating on-premises systems

with cloud services, hybrid strategies offer a robust solution for modern application deployment

and management.

Selecting an optimal orchestration tool that can effectively integrate with both on-premises and

cloud environments is crucial. Such a tool must provide consistent management and operational

capabilities across these environments, ensuring that microservices can be deployed and

managed with the same ease and efficiency, regardless of where they run. This requires robust

support for hybrid and multi-cloud deployments, including features such as unified monitoring

and management, consistent security policies, and seamless workload portability.

3

Platforms like Azure Kubernetes Service (AKS) and K3S stand out among the appropriate

orchestration tools due to their widespread adoption and comprehensive feature sets. AKS, a

managed Kubernetes service by Microsoft Azure, offers integrated CI/CD, monitoring, and

security features that simplify container management [5]. K3S, a lightweight Kubernetes

distribution by Rancher Labs, is optimized for resource-constrained environments, making it

ideal for edge computing and IoT applications [6].

This thesis is motivated by the need to provide a detailed and practical comparison of leading

orchestration tools, facilitating informed decision-making for organizations looking to

optimize their microservices management. We first identify the strengths and weaknesses of

each tool in different deployment scenarios by analyzing the performance, cost-effectiveness,

and qualitative features of AKS and K3S. Based on the comparison, we propose a formal

process for selecting the most suitable orchestration platform that will enable organizations to

achieve their operational and strategic objectives.

1.2. Objectives of the Thesis

This thesis aims to compare Azure Kubernetes Service (AKS) and K3S as orchestration tools

through a case study of a medium complexity microservices application. The application itself

comprises 15 microservices, each running individual pods within the Kubernetes Cluster.

Additionally, 7 system services are deployed as a part of kube-prometheus-stack, providing

essential monitoring and management capabilities. The findings from this thesis will promote

best practices in managing cloud-native applications and provide valuable resources for

practitioners and researchers alike. The specific objectives are as follows:

Quantitative Comparison:

To evaluate the performance and cost-effectiveness of at least two orchestration tools, focusing

on Azure Kubernetes Service (AKS) and K3S, one supporting cloud environments deployment

and the other supporting on-prem. To conduct measurements on infrastructure with identical

resources, including the number of processors (vCPU), amount of memory (RAM), capacity,

and type of system disk, as well as the number of clusters related to the control plane and

worker nodes. To analyze performance metrics such as response time, throughput, and resource

utilization to determine how each tool handles the orchestration of microservices.

4

Qualitative Comparison:

To identify and analyze differences in implementation, configuration, ease of deployment,

integrations, management, security, and other relevant features of the orchestration tools. To

examine the setup and configuration processes, the user-friendliness of each tool, the

integration capabilities with existing systems and services, and the security features they offer.

Additionally, to explore available tools and techniques for monitoring performance and

optimizing clusters to understand how each platform supports ongoing operations and

maintenance.

Support and Community:

To compare the availability and quality of official support and the usefulness of related online

communities for each orchestration tool. To evaluate the documentation, official support

channels, and the strength and activity level of user communities. The goal is to understand

how accessible and effective the support mechanisms are for each tool, and how community

resources can aid in troubleshooting and optimizing the use of the orchestration platforms.

Selection Process:

To develop a formal process for selecting the optimal orchestration platform based on the

measured data and the analysis of collected information. To design framework, i.e. a structured

system for evaluating both quantitative and qualitative factors, which organizations can use to

evaluate orchestration tools based on their specific needs and constraints. To provide an

associated set of guidelines and recommendations to help organizations choose the most

suitable orchestration tool for their microservices applications.

1.3. Limitation

While this study provides valuable insights into the performance and suitability of Azure

Kubernetes Service (AKS) and K3S for orchestrating microservices, it is essential to consider

the following limitations:

• Application Specificity: The case study application is of medium complexity and the

results may not be directly applicable to applications with significantly different

complexity levels. Organizations with simpler or more complex applications might

need to conduct additional evaluations to determine the best orchestration tool for their

specific needs.

5

• Selected Orchestration Tools: This study focuses on AKS and K3S due to their

widespread adoption and relevance. While OpenShift is mentioned for context, the

practical part of this thesis does not cover it. Other orchestration tools, such as Google

Kubernetes Engine (GKE) or Amazon Elastic Kubernetes Service (EKS), are also

available but not included in this comparison.

• Deployment Environment: The comparison is limited to the specified environments:

on-premises and cloud. The study does not account for hybrid or multi-cloud

deployments, which may have different requirements and challenges.

• Resource Constraints: Measurements are conducted on infrastructure with identical

resources, including the number of processors (vCPU), amount of memory (RAM),

capacity and type of system disk, and the number of clusters related to the control plane

and worker nodes. While this ensures a fair comparison, it may not represent all

possible deployment scenarios or resource configurations.

• Temporal Relevance: The rapidly evolving nature of technology means that the

findings of this thesis may become outdated as new features and improvements are

introduced to the orchestration tools. Regular updates and new releases from AKS and

K3S could impact the relevance and accuracy of the results over time.

1.4. Structure of the Thesis

The following is an overview of the thesis structure:

The first chapter introduces the topic of the thesis, providing background information and the

motivation behind the study. It outlines the thesis's objectives, scope, and limitations and

presents the overall structure.

The second chapter provides the foundational knowledge necessary for understanding

microservices architecture. It begins with an exploration of microservices, covering their

definition, principles, benefits, and challenges. The chapter then delves into orchestration tools,

offering an overview of their purpose, key features, and functions. Specific attention is given

to Azure Kubernetes Service (AKS) and K3S as the selected orchestration tools.

The third chapter describes the case study that serves as the basis for the comparison. This

includes a detailed description of the microservices application, its architecture, and both its

functional and non-functional requirements. The experimental setup is explained, covering

infrastructure specifications, deployment scenarios, and the testing methodology.

6

The fourth chapter shifts the focus to the practical implementation and deployment of the

microservices application using the selected orchestration tools. This includes a step-by-step

guide on configuring and setting up Azure Kubernetes Service (AKS) and K3S, detailing the

deployment processes, and addressing any challenges encountered along the way.

The fifth chapter evaluates the performance and cost-effectiveness of the orchestration tools.

Performance testing results are presented, followed by a detailed analysis of the performance

metrics. The cost analysis includes the methodology for cost calculation and a comparative

analysis of costs. Resource utilization, including CPU, memory, storage, and network

performance, is also discussed.

In the sixth chapter, a qualitative analysis examines differences in implementation and

configuration, ease of deployment, integrations, management, and security features of the

orchestration tools. Tools and techniques for monitoring and optimization are explored, and

the quality of community support and documentation is assessed.

The seventh chapter synthesizes the findings from the quantitative and qualitative analyses. It

summarizes the strengths and weaknesses of each orchestration tool, offers recommendations

for selecting an orchestration platform, and discusses the implications of the research findings

for future work.

The concluding chapter summarizes the entire thesis, highlighting key contributions and

findings.

7

2. Theoretical Background

This chapter provides a comprehensive theoretical background on microservices architecture,

delving into its definition, principles, benefits, and challenges. It then explores orchestration

tools, detailing their key features, functions, and importance in managing microservices.

Finally, the chapter provides an in-depth overview of two selected orchestration tools: Azure

Kubernetes Service (AKS) and K3S, highlighting their unique features, benefits, and suitable

use cases.

2.1. Microservices Architecture

2.1.1. Definition and Principles

Microservices architecture is a software design approach that decomposes an application into

a collection of loosely coupled, independently deployable services [1]. Each service

corresponds to a specific business capability and can be developed, deployed, and scaled

independently. This modular approach is in sharp contrast to traditional monolithic

architectures, where all functionalities are tightly interconnected in a single, large application

[7].

Key Principles of Microservices Architecture [8]:

1. Single Responsibility Principle: Each microservice should focus on a single piece of

business functionality. This principle promotes a clear separation of concerns, making

the system easier to understand, develop, and maintain.

2. Independence: Services should be independently deployable and scalable. This

independence allows for continuous delivery and deployment, enabling faster time-to-

market.

3. Decentralized Data Management: Each service manages its own database or data

storage, ensuring that services remain decoupled. This approach simplifies the data

model and enhances data consistency within each service.

4. Inter-Service Communication: Microservices communicate with each other via

lightweight protocols such as HTTP/REST or messaging queues. This communication

must be robust and reliable to ensure the smooth operation of the system.

5. Automation through CI/CD:

a. Continuous Integration (CI): This practice involves frequently merging code

changes from multiple developers into a central repository, where automated

8

builds and tests are run. The primary goal of CI is to quicky detect and address

bugs, improve software quality, and reduce the time it takes to validate and

release new software updates.

b. Continuous Deployment (CD): Extends CI by automatically deploying all

code changes from the repository to the production environment after passing

set tests. This means changes are automatically and reliably made live,

providing a faster pathway to addressing user needs and improving the

application.

Significance of CI/CD in Microservices:

CI/CD enables organizations to handle the inherent complexity of managing multiple

microservices by automating the integration and deployment processes. This automation

supports frequent updates and consistent system behaviour across different environments [9].

For microservices, where multiple services must work in concert yet be developed and scaled

independently, CI/CD provides a systematic approach to rapid and reliable software delivery.

This is crucial for maintaining system integrity and agility in the dynamic operational

landscapes where microservices thrive [10].

Microservices are often deployed using containerization technologies such as Docker, which

encapsulates a service and its dependencies in a container [2]. This encapsulation ensures

consistent operation across various environments, further supported by CI/CD pipelines that

automate the testing and deployment of these containers.

Role of Containers in Microservices:

Containers are a lightweight form of virtualization that encapsulate an application and its

dependencies into a self-contained unit that runs consistently across any computing

environment. This technology is pivotal for microservices architectures due to its ability to

isolate software from its surroundings, thus ensuring that it works uniformly despite differences

in infrastructure or location.

In a microservices architecture, each service is deployed as a separate container, allowing

individual services to run independently of others [3]. This independence is crucial for

implementing the core principles of microservices such as agility, scalability, and resilience.

• Consistency and Portability: Containers provide a consistent environment for

applications from development through production. This portability simplifies the

9

deployment process across different computing environments, from a developer's local

machine to the production servers.

• Rapid Provisioning: Containers can be created and destroyed in seconds, providing

the agility needed to deploy, scale, and terminate services swiftly according to demand.

• Resource Efficiency: Unlike traditional virtual machines that each require a full

operating system, containers share the host system’s kernel. This design significantly

reduces overhead, making it possible to run more services on the same hardware.

As the deployment of microservices scales, understanding and managing the lifecycle of the

underlying cloud infrastructure becomes critical. By comprehensively addressing each phase

of the lifecycle, organizations can ensure that their microservices architecture remains robust,

efficient, and capable of meeting evolving demands. The following section details the lifecycle

of cloud infrastructure within the context of microservices deployment.

Advantages of Cloud Infrastructure [3]:

1. Agility: Cloud infrastructure enables rapid deployment and scaling of services,

allowing organizations to respond quickly to changing business needs.

2. Cost-Efficiency: The pay-as-you-go model of cloud services minimizes upfront capital

expenses and aligns costs with actual usage, promoting financial efficiency.

3. Resilience: Built-in redundancy and geographic distribution of cloud resources

enhance the reliability and availability of applications, minimizing downtime and

ensuring business continuity.

Lifecycle of Cloud Infrastructure [11]:

The lifecycle of cloud infrastructure in a microservices context involves several critical stages,

each essential for maintaining an efficient, reliable, and scalable system:

1. Planning and Design: This initial stage involves defining the architecture, selecting

appropriate technologies (e.g., Kubernetes for orchestration, Docker for containers),

and establishing best practices for service design.

2. Development: During development, each microservice is built to conform to the

defined architecture and principles. Continuous Integration ensures that new code is

automatically tested and integrated into the existing codebase, reducing integration

issues.

10

3. Deployment: Services are deployed using Continuous Deployment pipelines, allowing

for automated releases to production environments. This stage leverages orchestration

tools to manage service distribution across nodes, ensuring high availability.

4. Monitoring and Scaling: Once deployed, services are continuously monitored for

performance and reliability using tools like Prometheus and Grafana. These insights

drive automated scaling actions, ensuring resources are allocated efficiently based on

demand.

5. Maintenance and Optimization: Regular updates and optimizations are performed to

improve performance, patch vulnerabilities, and add new features. This stage is critical

for maintaining system health and adapting to changing user needs.

6. Retirement: As services become obsolete or are replaced by newer solutions, they are

systematically decommissioned to free up resources and reduce complexity.

Integrating these stages into lifecycle management ensures that cloud infrastructure can adapt

to and support the evolving demands of modern applications.

2.1.2. Benefits and Challenges of Microservices Architecture

Understanding the benefits and challenges of microservices architecture is essential for

organizations considering or currently implementing microservices architecture. This

understanding helps in making informed decisions and optimizing their architecture for better

performance and reliability. The Table 1 below summarizes the key benefits and challenges

associated with microservices architecture.

Table 1. Summary of Benefits and Challenges in Microservices Architecture. Source [2].

Category Aspect Description

Benefits Scalability Microservices allow each service to be scaled independently,

optimizing resource utilization. This flexibility is particularly

valuable in handling varying loads and improving application

performance.

Flexibility Developers can use different technologies and frameworks for

different services, depending on what is best suited for the task.

This polyglot approach enables teams to leverage the best tools

for each job.

Resilience Fault isolation is improved as failures in one service do not

necessarily affect others. This resilience enhances the overall

availability and reliability of the application.

Faster

Deployment

Teams can deploy services independently, leading to more

frequent and faster updates. This agility is crucial for

responding to changing business requirements and market

conditions.

Better

Organization

Microservices align with modern DevOps practices and

encourage a more agile and collaborative approach to software

11

development. This alignment fosters a culture of continuous

improvement and innovation.

Challenges Complexity Managing numerous services can become complex,

particularly in terms of deployment, monitoring, and

maintenance. This complexity requires sophisticated tooling

and robust practices to handle effectively.

Inter-Service

Communication

Ensuring reliable communication between services can be

challenging, especially when network issues arise.

Implementing robust communication patterns and handling

failures gracefully are critical to maintaining system stability.

Data

Management

Maintaining consistency across decentralized databases can be

difficult. Techniques such as eventual consistency and

distributed transactions are often necessary but add complexity.

Deployment

Overhead

Setting up and managing CI/CD pipelines for multiple services

requires significant effort. Automation and orchestration tools

are essential to streamline these processes and reduce manual

intervention.

Latency Cross-service communication can introduce latency, impacting

performance. Optimizing communication paths and minimizing

data transfer can help mitigate these effects.

2.2. Kubernetes - Orchestration Tool

2.2.1. Orchestration Tools in General

This chapter explores what orchestration tools are, their purposes, and the details of several

prominent orchestration tools used in managing microservices.

Orchestration tools are crucial for the management of microservices architectures, as they

provide a software platform to automate the deployment, scaling, and operation of

containerized applications. These tools ensure that services run smoothly, remain highly

available, and dynamically scale based on demand. By automating and coordinating the

processes involved, orchestration tools facilitate the efficient operation of complex applications

composed of multiple, interdependent services.

Key Features and Functions of Kubernetes

Table 2 summarizes the key features and functions of Kubernetes, highlighting how they

contribute to the effective orchestration and management of containerized applications:

Table 2. Summary of Key Features and Functions in Orchestration Tools. Source [3].

Category Feature/Function Description

Key

Features

Declarative

Configuration

Users define the desired state of the system using

configuration files. The orchestration tool then ensures the

system matches this state. This approach simplifies

management and reduces errors.

Self-Healing Orchestration tools automatically replace failed containers

and ensure that the desired number of instances is always

12

running. Self-healing improves the resilience and availability

of applications.

Rolling Updates and

Rollbacks

These tools facilitate seamless updates by gradually replacing

old versions with new ones. They also allow rolling back to

previous versions if issues are detected, minimizing

downtime.

Horizontal Scaling Orchestration tools automatically adjust the number of

running instances of a service based on demand. This

capability helps maintain performance and handle varying

loads.

Persistent Storage Managing storage resources and ensuring data persistence in

case of container restarts. Persistent storage solutions enable

applications to retain state and data integrity.

Functions Deployment Orchestration tools automate the deployment of applications,

ensuring containers are launched with the correct

configurations. This automation reduces manual effort and

increases consistency.

Load Balancing Distributing incoming traffic across multiple instances of a

service to ensure high availability and reliability.

Management Orchestration tools provide a centralized platform for

managing all aspects of containerized applications, including

configuration, storage, and networking. Centralized

management simplifies operations and enhances control.

Resource

Management

Efficiently allocating resources such as CPU and memory to

different services based on their needs.

Monitoring Continuous monitoring of the health and performance of

services, with alerts and insights, helps maintain optimal

operation. Monitoring tools enable proactive issue resolution

and performance optimization.

Security Enforcing security policies and best practices to protect

applications and data is a key function of orchestration tools.

Security features include encryption, access control, and

network segmentation.

In Table 3 are listed key use cases for Kubernetes: managing complex applications, supporting

modern development practices, and handling large-scale data processing.

Table 3. Use Cases for Kubernetes

Enterprise Applications Large enterprises use Kubernetes to manage complex, multi-

tier applications. Its scalability and resilience are crucial for

maintaining the performance and availability of business-

critical applications.

Cloud-Native Applications Kubernetes is ideal for developing and deploying cloud-

native applications that leverage microservices architectures.

It provides the tools needed to manage the dynamic nature of

these applications.

DevOps and Continuous

Integration/Continuous

Deployment (CI/CD)

Kubernetes streamlines the CI/CD pipeline by automating the

deployment and scaling of applications. It integrates well

with DevOps tools, enabling rapid development and

deployment cycles.

Hybrid and Multi-Cloud

Deployments

Kubernetes supports hybrid and multi-cloud environments,

allowing organizations to deploy applications across on-

premises and cloud infrastructures. This flexibility helps

13

avoid vendor lock-in and enhances disaster recovery

capabilities.

Big Data and Machine Learning Kubernetes is used to manage big data and machine learning

workloads, providing the scalability and resource

management needed for processing large datasets and

training complex models.

Table 4 presents key orchestration tools for microservices:

Table 4. Overview of Key Orchestration Tools for Microservices

Orchestration

Tool

Description Use Case Created By

Kubernetes Developed in 2008 by Google,

Kubernetes is an open-source container

orchestration tool known for its vast

library of functionalities and automated

deployment features. It was handed

over to the Cloud Native Computing

Foundation in 2014.

Large-scale enterprise

applications, cloud-

native applications,

multi-cloud and hybrid

cloud environments.

Google

K3S Developed by Rancher Labs, K3S is a

lightweight Kubernetes distribution

designed for easy installation and low

resource use, making it ideal for edge,

IoT, and low-capacity environments.

Edge computing, IoT

deployments, small to

medium enterprises,

and environments with

limited resources.

Rancher

Labs

OpenShift OpenShift by Red Hat is an enterprise-

grade hybrid platform that expands

Kubernetes functionalities. It offers

both Container-as-a-Service (CaaS) and

Platform-as-a-Service (PaaS) models,

with a small learning curve and support

for creating databases and application

services.

Enterprise

environments, hybrid

cloud deployments, and

application services

development.

Red Hat

Nomad Developed by HashiCorp, Nomad

supports container and non-container

workloads, integrating with other

HashiCorp tools like Consul, Vault, and

Terraform. It supports macOS,

Windows, and Linux, and offers GPU

support, scalability, and multi-cloud

deployments.

Mixed workload

environments,

organizations using

HashiCorp tools, and

highly dynamic,

scalable applications.

HashiCorp

Docker Swarm Docker Swarm is Docker’s native

support for container orchestration,

providing portable and agile

applications with seamless load

balancing and high service availability

in a distributed environment.

Small to medium-sized

deployments,

development and

testing environments,

Docker-native

applications.

Docker, Inc.

Apache Mesos Apache Mesos is an open-source

cluster management tool that performs

container orchestration and allows

resource sharing and allocation across

distributed frameworks, suitable for

large-scale clustered environments.

Large-scale data

processing, high-

performance

computing, multi-

framework

environments.

Apache

Software

Foundation

Helios Developed by Spotify, Helios is a tool

for orchestrating Docker containers,

Managing Docker

containers, fitting into

Spotify

https://kubernetes.io/
https://k3s.io/
https://www.openshift.com/
https://www.nomadproject.io/
https://dockerswarm.rocks/swarm-or-kubernetes/
http://mesos.apache.org/
https://github.com/spotify/helios

14

known for its practicality and ability to

fit seamlessly with most developer

workflows, supporting single-node and

multi-node instances.

existing developer

workflows, single-node

and multi-node

deployments.

2.2.2. Overview of the Kubernetes Orchestration Tool

Kubernetes is an open-source platform designed to automate the deployment, scaling, and

operation of containerized applications. Originally developed by Google in 2008 Table 4,

Kubernetes has become the industry standard for container orchestration. In 2014, Google

handed over Kubernetes to the Cloud Native Computing Foundation (CNCF), ensuring its

continued development and widespread adoption. [1]

Kubernetes operates using a cluster-based architecture composed of distributed physical or

virtual servers, known as nodes. These nodes are categorized into two main types: master and

worker nodes, which together form a cluster. The components installed on a node determine

its functionality and identify it as either a master or worker node.

Cluster architecture

A Kubernetes cluster consists of a control plane and one or more worker nodes. The control

plane is responsible for managing the overall state of the cluster, while the worker nodes

execute the tasks assigned by the control plane. The architecture of a Kubernetes cluster is

designed to ensure fault-tolerance and high availability, with the control plane managing the

worker nodes and the pods they host.

Control plane components:

• “API Server: The API server (kube-apiserver) is the core component of the Kubernetes

control plane that exposes the Kubernetes API. It acts as the front end for the

Kubernetes control plane, handling all RESTful requests and updates to the cluster. For

example, when you deploy an application on Kubernetes, the API server processes the

request and updates the cluster state accordingly.

• etcd: A consistent and highly available key-value store that serves as the primary data

storage mechanism for all cluster configuration data and state. This component is

critical for maintaining the cluster's state and ensuring that configuration data is reliably

stored and accessible. In a production environment, etcd is typically configured with

high availability, often running as a distributed system across multiple nodes.

• Scheduler: The scheduler (kube-scheduler) is responsible for assigning workloads to

nodes based on resource availability, performance requirements, and other constraints.

15

It ensures that pods are efficiently distributed across the nodes in the cluster. For

instance, if one node is under heavy load, the scheduler will allocate new pods to a less

utilized node to balance the workload.

• Controller Manager: The controller manager (kube-controller-manager) runs various

controllers that regulate the state of the cluster. These controllers include the node

controller, which monitors node health, and the deployment controller, which manages

application updates and scaling. The deployment controller, for example, ensures that

the correct number of pod replicas are always running.” [4]

• Cloud Controller Manager: Specific to cloud deployments, the cloud controller

manager integrates the cluster with cloud provider APIs, managing cloud-specific

resources such as load balancers, storage, and networking. [5] This component is

essential for leveraging cloud-specific features, such as automatically provisioning a

cloud load balancer when a service of LoadBalancer type is created.

“Worker node components:

• Kubelet: The kubelet is an agent running on each worker node that ensures containers

are running in a pod. It monitors the state of the containers and intervenes to maintain

the desired state as specified by the control plane. For example, if a container in a pod

crashes, the kubelet will automatically restart it.

• Container Runtime: The container runtime, such as Docker or containerd, is

responsible for running the containers within pods. It abstracts system-level operations,

allowing Kubernetes to manage containers uniformly across different environments.

The container runtime ensures that containers are isolated and have the necessary

resources to run.

• Kube-proxy: Kube-proxy is a network proxy that runs on each node, maintaining

network rules and managing communication between services in the cluster. It ensures

that network traffic is properly routed to and from pods. For example, kube-proxy helps

in load balancing network traffic to different pod replicas providing the same service.”

[4].

16

Figure 1. The Components of a Kubernetes Cluster. Source: [4].

“Kubernetes resources play a vital role in defining and managing the state and behaviour of

applications within a cluster. These resources presented in Figure 1. The Components of a

Kubernetes Cluster. Source: .ensure that applications are efficiently deployed, scaled, and

maintained across the cluster.

• Pods: A pod is the smallest deployable unit in Kubernetes, encapsulating one or more

containers that share the same network namespace and storage. Pods are fundamental

to Kubernetes applications, allowing for easy scaling and management. They are

scheduled on worker nodes to ensure efficient resource utilization. For instance, a web

application might consist of multiple pods, each hosting a web server container.

• Controllers: Controllers in Kubernetes maintain the desired state of the cluster by

managing pods and other resources. They automate essential tasks such as deployment,

scaling, and self-healing. Examples include:

o Deployments: These manage the rollout of new application versions, ensuring

that a specified number of replicas are always running. Deployments facilitate

updates and rollbacks, enhancing application management.

o StatefulSets: Designed for stateful applications, StatefulSets ensure that each

pod has a unique identity and stable storage, making them ideal for databases

and other applications requiring consistent data access.

o DaemonSets: These ensure that a copy of a pod runs on all or specific nodes in

the cluster, typically used for services like logging and monitoring which need

to be present on every node.

17

• Services: Services define a logical set of pods and a policy for accessing them,

providing a stable network endpoint for communication between components. Services

also facilitate load balancing, ensuring that traffic is evenly distributed across pods. For

example, a service might expose a set of backend pods to external traffic, distributing

the load evenly across all pods.

• Ingress: Ingress resources manage external access to services within a cluster, offering

advanced load balancing, SSL termination, and name-based virtual hosting. Ingress

enhances security and provides a unified entry point for accessing applications. A

common use case for ingress is to route HTTP and HTTPS traffic to different services

based on the request URL.” [4].

Figure 2. Kubernetes Cluster Architecture. Source: [4].

Deploying Kubernetes involves setting up the master and worker nodes, configuring networking, and ensuring

that the components can communicate securely and efficiently. Figure 2 illustrates the architecture of a

Kubernetes cluster, showing the relationship between the master and worker nodes, and how they handle

workloads, networking, and communication between components. In

Table 5 are listed the primary methods for deploying Kubernetes:

18

Table 5. Deployment Methods for Kubernetes

Deployment

Method

Description Tools/Services

On-Premises

Deployment

Kubernetes can be deployed on physical or

virtual machines in an on-premises data

center. This method involves setting up and

managing clusters locally.

Kubeadm, K3S, OpenShift

Cloud-Based

Deployment

Many cloud providers offer managed

Kubernetes services that simplify deployment

and management. These services handle

much of the infrastructure setup and

maintenance.

Google Kubernetes Engine

(GKE), Azure Kubernetes

Service (AKS), Amazon Elastic

Kubernetes Service (EKS)

Hybrid

Deployment

Organizations can deploy Kubernetes in a

hybrid environment, combining on-premises

and cloud resources. This approach offers

flexibility, scalability, and better disaster

recovery capabilities.

OpenShift, K3S

Local

Development

For development and testing purposes,

Kubernetes can be deployed locally using

tools that create and manage Kubernetes

clusters on local machines.

Minikube, Kind (Kubernetes IN

Docker), K3D

2.3. Overview of Selected Orchestration Tools

In the rapidly evolving field of container orchestration, two tools stand out: Azure Kubernetes

Service (AKS) [12] and K3S [6]. They both simplify the management of containerized

applications, but each is tailored to different needs.

Azure Kubernetes Service (AKS) is a fully managed service from Microsoft, which is built on

the open-source Kubernetes system. It provides a robust and scalable solution for enterprise

needs.

K3S is a lightweight Kubernetes distribution developed by Rancher Labs That is optimized for

resource-constrained environments and IoT applications. It offers a streamlined and efficient

Kubernetes experience.

This section provides an overview of AKS and K3S and sets the stage for a detailed

examination of their features, benefits, and use cases.

2.3.1. Azure Kubernetes Service (AKS)

Azure Kubernetes Service (AKS) is a managed container orchestration service that simplifies

the deployment, scaling, and operation of containerized applications [5]. By automating

essential infrastructure tasks such as updates and scaling, AKS allows development teams to

concentrate on application development.

19

Key Features and Advantages of AKS [5]:

• Managed Infrastructure: AKS automates management tasks, such as updates and

scaling, reducing the operational overhead on DevOps engineers and improving

efficiency.

• Integrated Security: AKS offers enhanced security by integrating with Azure’s

security services, providing robust identity management and access controls to protect

sensitive data.

• Cost-Effective Scalability: AKS supports a flexible pricing model that allows

businesses to optimize costs based on resource usage. Its scalability features enable

applications to efficiently manage varying loads, making it suitable for dynamic

applications.

• High Availability and Reliability: AKS ensures high availability with features like

automated node health monitoring and self-healing capabilities, maintaining consistent

performance and uptime.

• Hybrid and Multi-Cloud Flexibility: AKS supports deployments across hybrid and

multi-cloud environments, offering businesses flexibility and preventing vendor lock-

in.

Setting up AKS involves the following steps [12]:

1. Create an AKS Cluster: Use the Azure portal, CLI, or Azure Resource Manager

templates to create a new Kubernetes cluster.

2. Configure the Cluster: Set up node count, networking options, and other

configurations.

3. Deploy Applications: Use kubectl to deploy containerized applications to the cluster.

4. Scale and Manage: Utilize AKS features for scaling and managing applications, such

as autoscaling and monitoring tools.

2.3.2. K3S

K3S is a lightweight Kubernetes distribution optimized for resource-constrained environments

and IoT applications [6]. It simplifies the Kubernetes setup to offer a streamlined experience

while ensuring compatibility with the broader Kubernetes ecosystem. DevOps engineers

manage their entire cluster, including control plane nodes, and are responsible for updates,

patches, and maintenance. This level of control allows flexibility but can introduce complexity,

20

especially in larger deployments. Managing multiple clusters or complex infrastructure might

require advanced skills and additional tools.

K3S provides a production-ready Kubernetes environment with minimal resource usage,

making it ideal for edge computing and scenarios where resources are limited. It maintains

essential Kubernetes functionalities but without the typical overhead of traditional

distributions.

Some of the key use-cases where K3S performs well [6]:

• Edge Computing: K3S is ideal for managing applications on edge devices, where

resources are limited, and simplicity is crucial for efficient operations.

• IoT Deployments: K3S is well-suited for efficiently managing fleets of IoT devices,

offering streamlined operations with minimal resource consumption. Its ability to run

on ARM architecture means it can be deployed directly onto a wide range of IoT

devices.

• Development and Testing: K3S provides a lightweight environment that is perfect for

developers to create and test Kubernetes applications.

• Small-Scale Deployments: K3S offers simplicity and efficiency, making it particularly

beneficial for organizations with limited resources.

• Hybrid Deployments: K3S is also capable of being used in hybrid environments,

effectively combining resources from edge devices and cloud setups for integrated

operations.

K3S integrates with a wide range of DevOps tools to enhance its functionality and streamline

development workflows. It supports Kubernetes package management, allowing developers to

easily manage and deploy applications using pre-configured charts. K3S is also compatible

with various continuous integration and continuous deployment (CI/CD) platforms, enabling

automated pipelines that build, test, and deploy applications directly to K3S clusters. For

monitoring and observability, K3S works with tools that provide insights into application

performance and health. Additionally, it is well-suited for integration with configuration

management systems, which automate the provisioning and management of K3S clusters. This

flexibility makes K3S a versatile platform that aligns well with modern DevOps practices,

supporting a comprehensive toolchain for efficient software lifecycle management.

Reasons to choose K3S include its simplicity, as it offers a straightforward installation process

and minimal dependencies that make it easy to set up and manage. Additionally, it features a

21

reduced binary size and low resource requirements. K3S also simplifies storage management

by supporting local storage without the need for a dedicated backend. This makes it particularly

efficient and allows for rapid deployment and scaling across various environments.

Initiating a K3S deployment involves the following steps:

1. Install K3S: Execute the installation script on the target machine to automatically set

up and configure K3S. During installation, define the roles of each node, setting up

control plane and agent nodes as needed, with customizable options available via

environment variables for specific requirements like network plugins or Kubernetes

versions.

2. Configure Settings: After installation, adjust additional settings such as network

policies and storage options to tailor the cluster to specific operational needs.

3. Deploy Applications: Use kubectl to deploy containerized applications using YAML

files that define the necessary configurations for images, replicas, and network settings.

4. Manage and Scale: Employ K3S’s tools to monitor, manage, and dynamically scale

applications according to demand, ensuring efficient performance and resource

utilization.

22

3. Case Study Design

This chapter outlines the design of the case study for evaluating Azure Kubernetes Service

(AKS) and K3S using the "microservices-demo" application developed by Google, also known

as “Online Boutique" [13]. It includes a detailed description of the microservices application

used for the evaluation, the experimental setup, and the specific configurations for both AKS

and K3S deployments. Additionally, this chapter will explain the functional and non-functional

requirements of the application, the infrastructure specifications, the deployment environment,

and the monitoring setup.

3.1. Description of the Microservices Application

3.1.1. Application Architecture

“The “Online Boutique” is a cloud-native microservices demo application showcasing a

modern application architecture. It consists of an e-commerce website where users can browse

items, add them to the cart, and purchase them. The application is designed to demonstrate best

practices for running microservices on Kubernetes.

The “Online Boutique” application is built using a collection of microservices, each designed

to perform specific functions while working together to create a seamless e-commerce

experience:

1. Frontend: This is the web-based user interface where customers can browse items, add

them to their cart, and proceed to checkout. There is no login or signup; a session ID is

generated automatically for all users.

2. Product Catalog Service: This service manages the store's product inventory. It

provides a list of products from a JSON file, allows users to search for products, and

retrieve details about individual items.

3. Cart Service: Responsible for managing the user's shopping cart. It stores items in the

cart using Redis and retrieves them as needed.

4. Checkout Service: This service handles the entire checkout process. It retrieves the

user’s cart, prepares the order, and coordinates payment, shipping, and email

notifications.

5. Payment Service: This service processes payments. It charges the provided credit card

information (mocked) with the specified amount and returns a transaction ID.

https://github.com/GoogleCloudPlatform/microservices-demo/tree/main
https://github.com/GoogleCloudPlatform/microservices-demo/tree/main

23

6. Shipping Service: Manages the shipping of purchased items. It provides shipping cost

estimates based on the items in the cart and ships items to the given address (mocked).

7. Ad Service: Displays advertisements to users. It delivers text ads based on the provided

context words.

8. Currency Service: Offers currency conversion rates, converting amounts from one

currency to another using real-time data fetched from the European Central Bank. This

service handles the highest number of queries per second.

9. Recommendation Service: Suggests products to users based on the contents of their

cart, enhancing the shopping experience with personalized recommendations.

10. Email Service: Sends order confirmation emails to users (mocked), ensuring they

receive notification about their purchases.

11. Load Generator: Simulates user traffic for testing purposes, continuously sending

requests to mimic realistic user shopping behaviors on the frontend.

As shown in Figure 3, the “microservices-demo” interconnection of elements microservices

illustrates the architecture, demonstrating how different microservices interact and

communicate within the system.” [13]

Figure 3. The "microservices-demo" interconnection of microservices. Source: [13].

24

Technology Stack for the 'Online Boutique' Application: The Online Boutique application

leverages a diverse and robust technology stack to deliver a cloud-native, microservices-based

architecture. This stack includes multiple programming languages, containerization

technologies, orchestration, messaging protocols, and monitoring solutions to ensure high

availability, scalability, and efficient communication between services.

• Programming Languages: Various, including Go, Java, Node.js, Python, C#,

• Databases: Redis for caching,

• Containerization: Docker for packaging microservices,

• Orchestration: Kubernetes for managing containerized applications,

• Messaging Protocols: HTTP for REST APIs, gRPC for internal service

communication,

• Monitoring: Prometheus and Grafana for system monitoring and visualization.

3.1.2. Functional and Non-functional Requirements

Functional Requirements

The functional requirements of the “Online Boutique” application are inherently described in

the Application Architecture section, where each service is responsible for specific application

functionalities.

Non-Functional Requirements and SLOs

The system's non-functional requirements set expectations related to efficiency, reliability

scalability and other considerations. These requirements are expressed as Service Level

Objectives (SLOs) to provide clear, measurable goals for the system's operation:

1. Scalability:

a. Objective: The platform must be scalable to handle increasing loads by

accommodating up to 500 concurrent users (as demonstrated in K6 testing).

b. SLO Target: Maintain consistent performance metrics, with no more than 5%

increase in average response time when scaling from 250 to 500 users.

c. Status: Achieved for both AKS and K3S, as both platforms demonstrated

scalability and high request throughput under test conditions.

25

2. Performance:

a. Objective: To achieve high throughput for data processing tasks in services like

Currency Conversion and Shipping Cost Estimates while ensuring the average

response times for user interactions remain under 100 milliseconds.

b. SLO Target: To maintain throughput of at least 100 requests per second with

response times not exceeding 100 ms for 99% of requests.

c. Status: Partially achieved, as K3S meets these targets; however, AKS requires

optimization to reduce request failures and improve response times.

3. Reliability:

a. Objective: To ensure system robustness and fault tolerance to achieve 99.9%

uptime.

b. SLO Target: To limit system downtime to less than 43 minutes per month, with

rapid recovery from any faults.

c. Status: To be validated through long-term monitoring, as reliability cannot be

fully assessed within the scope of this thesis. Continuous operation and real-

world testing are required to confirm these targets.

4. Portability:

a. Objective: The system should be deployable across various environments

without significant modifications.

b. SLO Target: To achieve deployment across different Kubernetes clusters (e.g.,

AKS and K3S) within 30 minutes using the same configuration files.

c. Status: Achieved, as the application was successfully deployed on both AKS

and K3S with consistent configurations.

5. Efficiency:

a. Objective: Specifies the goal of keeping CPU and memory usage below 75%

under normal operation to prevent overuse and manage costs effectively.

b. SLO Target: Clearly states that the target is to maintain average CPU and

memory usage below 75% for both AKS and K3S during benchmark tests.

c. Status: Achieved for K3S, as demonstrated by Sysbench results showing

efficient resource use; AKS may need further tuning.

6. Scalability of Monitoring:

a. Objective: To ensure monitoring systems scale with platform growth, providing

real-time insights into performance metrics.

26

b. SLO Target: To enable monitoring for 100% of deployed services with less than

1% performance overhead on system resources.

c. Status: Achieved, with Grafana and Prometheus providing comprehensive

monitoring across both AKS and K3S.

Non-functional requirements that are beyond the scope of this thesis:

1. Security: Implementing robust security measures, including encrypted

communications, role-based access control, and regular security assessments.

2. Maintainability: Ensuring the system is easy to maintain, with clear documentation,

modular components, and automated deployment pipelines.

3. Compliance: Adhering to industry standards and regulations, including data privacy

laws and cybersecurity guidelines.

3.2. Experimental Setup

This section outlines how the “Online Boutique” microservices application is deployed and

tested using Azure Kubernetes Service (AKS) and K3S. It includes infrastructure

specifications, deployment scenarios, and testing methodology.

3.2.1. Infrastructure Specifications

The testing infrastructure for AKS is provided in the cloud environment and runs on the latest

Ubuntu OS, while the infrastructure for K3S is provided on-premises and runs on the Rocky

Linux distribution. From the user perspective, the frontend service in both environments is

accessible via IP addresses over the HTTP port.

 Details about each infrastructure used for testing are provided below.

Cloud Environment (AKS)

It utilizes virtual machines provided by Microsoft Azure for AKS. The cluster SKU for worker

nodes is Standard_A2_v2 with 2 vCPUs and 4GB RAM per virtual machine (VM) as shown

in Table 6. There is one node pool with a count of two nodes. The OS disk size is 50GB. AKS

is deployed using Terraform [14] to automate and manage the infrastructure setup.

27

Table 6. Specifications for Each Worker Node in Azure Kubernetes Service

Component Specification

Cluster SKU Standard_A2_v2

vCPUs per VM 2

RAM per VM 4 GB

Node Pool Count 2

OS Disk Size 50 GB

Terraform is an open-source infrastructure as code (IaC) software tool created by HashiCorp

[14]. It enables users to define and provision data center infrastructure using a high-level

configuration language known as HashiCorp Configuration Language (HCL), or optionally

JSON. Terraform manages external resources (such as public cloud infrastructure, private

cloud infrastructure, network appliances, software as a service, and platform as a service) with

a provider model. This IaC approach provides a consistent workflow for provisioning and

managing the lifecycle of cloud infrastructure.

On-Premises Environment (K3S)

It utilizes physical or virtual machines with the following specifications: three Control Plane

Nodes each with 2 CPUs, 4GB of memory, and a 50GB SSD OS disk. Two Worker Nodes

each have 2 CPUs, 4GB of memory, and a 50GB SSD OS disk as shown in Table 7 and Table

8. K3S is deployed using vSphere Center [15] to provide VMs and Ansible [16] for

configuration management and automation.

Table 7. Specifications for Each Control Plane Node in On-Premises K3S Environment

Component Specification

vCPUs per VM 2

RAM per VM 4 GB

OS Disk Size 50 GB SSD each

Master Node Count 3

28

Table 8. Specifications for Each Worker Node in On-Premises K3S Environment

Component Specification

vCPUs per VM 2

RAM per VM 4 GB

OS Disk Size 50 GB SSD each

Worker Node Count 2

vSphere is a virtualization platform from VMware. vSphere, which includes ESXi hypervisor

and vCenter server, allows users to manage virtual machines (VMs) and other infrastructure

components from a centralized location.

Ansible is an open-source tool for provisioning, configuration management, and application-

deployment enabling infrastructure as code. It uses SSH to execute operations on remote

machines, making it agentless and easy to manage. By using Ansible with vSphere, users can

automate the deployment, configuration, and management of their virtual infrastructure.

3.2.2. Platform Infrastructure Elements

The “Online Boutique” platform leverages several critical infrastructure elements to ensure

robust and scalable operations:

Ingress Controller (NGINX)

The NGINX Ingress Controller [17] monitors Kubernetes Ingress resources and configures

NGINX to handle incoming traffic to the Kubernetes cluster. It performs key functions such as

load balancing, reverse proxying, SSL/TLS termination, and health checks. This ensures that

traffic is efficiently managed and routed within the platform.

Prometheus

Prometheus [18] is an open-source monitoring and alerting toolkit designed for reliability and

scalability. It is used to collect and store metrics from various Kubernetes objects, such as

nodes, pods, containers, and services. Prometheus follows a pull-based model, periodically

scraping metrics from targets and storing them as time series data.

Grafana

Grafana [19] is an open-source interactive data-visualization platform that allows users to

create and share dashboards. It integrates with Prometheus to visualize metrics and provide

29

insights into system performance. Grafana dashboards are used to monitor the health and

behavior of “Online Boutique's” services and infrastructure.

3.2.3. Deployment Scenarios

“For this case study, we will use only a production-ready environment for deploying the

“Online Boutique” application. However, in real-world scenarios, it is good practice to have

three separate environment setups: development, staging, and production.

Development environment used for initial development and testing. It allows developers to

build and test new features in an isolated setting. Typically, it includes tools and configurations

that enable rapid iterations and debugging.

Staging environment mimics the production environment as closely as possible. It is used for

final testing before deployment to production. The staging environment helps identify

any issues that might not have been caught during development and ensures that the application

behaves as expected under production-like conditions.

Production environment is the live environment where the application is accessible to end-

users. It is optimized for performance, reliability, and security. Changes to the production

environment are made cautiously and are usually preceded by thorough testing in the

development and staging environments.” [20]

3.2.4. Testing Methodology

This section outlines the tools and methodologies used for performance and load testing, as

well as observability and monitoring practices.

Performance Testing

Performance testing evaluates the application's responsiveness and stability under various

conditions. The tools and methodologies used for performance testing include:

• Tools used for simulating user interactions and load:

o Apache AB (Apache Benchmark) [21] is a tool for benchmarking web server

performance by simulating multiple user requests.

o K6 [22] is a modern load testing tool that provides scripting capabilities to

define complex testing scenarios.

• Metrics Collected: Response time, throughput, CPU and memory utilization, error

rates, and latency.

30

Load Testing

Load testing assesses the application's behavior under high demand to ensure it can scale and

remain stable. The key components of load testing include:

• Scenarios: Simulate peak traffic conditions, such as simultaneous device data

submissions and multiple user interactions.

• Objectives: Identify the maximum load the system can handle, detect bottlenecks, and

ensure the application scales appropriately.

Observability and Monitoring

Monitoring the application's performance during testing is crucial for identifying issues and

ensuring smooth operation. The observability and monitoring tools used include:

• Tools Used: The Grafana and Prometheus stack for metrics collection and

visualization.

• Metrics Monitored: System health, resource usage, application performance, and user

activity.

Prometheus collects and stores metrics, while Grafana visualizes these metrics in customizable

dashboards. This stack provides a comprehensive view of the application's performance and

helps identify potential issues during testing.

31

4. Implementation and Deployment

4.1. Deploying Application on Azure Kuberentes Service (AKS)

This section demonstrates how Azure Kubernetes Service (AKS) is utilized to deploy and

manage the “Online Boutique” microservices application effectively. This deployment focuses

on configuration, setup, the deployment process, and addressing common challenges with

practical solutions. Detailed steps and configuration files used for this deployment can be

accessed in the GitHub repository linked in “Appendix” at the end of this document.

4.1.1. Configuration and Setup of Infrastructure

Setting up an AKS cluster involves selecting the appropriate region, VM size, and type. For

this deployment, the Standard_A2_v2 SKU with 2 vCPUs and 4GB RAM for each of the two

nodes is used. The OS disk size is set to 50GB SSD. This configuration provides a balance of

cost-efficiency and performance, suitable for a demonstration environment. Using Terraform,

the deployment in Azure includes the following resources:

resource "azurerm_resource_group" "resource_group" {

 name = "${var.prefix}-rg"

 location = var.azure_location

}

resource "azurerm_kubernetes_cluster" "aks" {

 name = "${var.prefix}-aks"

 location =

azurerm_resource_group.resource_group.location

 resource_group_name = azurerm_resource_group.resource_group.name

 dns_prefix = "${var.prefix}-aks"

 sku_tier = "Standard"

 default_node_pool {

 name = "a2v2"

 node_count = 2

 vm_size = "Standard_A2_v2"

 type = "VirtualMachineScaleSets"

 os_disk_size_gb = 50

 }

 identity {

 type = "SystemAssigned"

32

 }

 network_profile {

 network_plugin = "kubenet"

 network_policy = "calico"

 load_balancer_sku = "standard"

 }

}

Code 1. Terraform configuration script for deploying an Azure Kubernetes Service (AKS) cluster

This Terraform script shown in Code 1 defines the infrastructure for deploying an Azure

Kubernetes Service (AKS) cluster along with its associated Azure Resource Group. The script

is divided into four parts:

Azure Resource Group:

• An Azure Resource Group is created using a name that combines a user-defined prefix

with "-rg".

• The location of the Resource Group is specified by the user in Terraform variables file.

Azure Kubernetes Service (AKS) Cluster:

1. Configuration:

a. Name: The name of the AKS cluster is constructed using a prefix specified by

the user followed by "-aks".

b. Location: The location is inherited from the previously created resource group.

c. Resource Group: The AKS cluster is created within the specified resource

group.

d. DNS Prefix: A DNS prefix for the AKS cluster is set, using the prefix specified

by the user.

e. SKU Tier: The cluster uses the "Standard" SKU tier, which is suitable for

production workloads.

2. Node Pool Configuration

a. Name: The default node pool is named "a2v2".

b. Node Count: The node pool consists of 2 nodes.

c. VM Size: The virtual machines in the node pool use the "Standard_A2_v2" size.

d. Type: The nodes are part of a Virtual Machine Scale Set.

e. OS Disk Size: Each node has a 50 GB OS disk.

3. Identity Configuration

33

a. Type: The AKS cluster uses a "SystemAssigned" managed identity for

resource access.

4. Network Profile

a. Network Plugin: The cluster uses the "kubenet" [23] network plugin for basic

networking.

b. Network Policy: The cluster uses the "calico" [24] network policy for network

security and policy enforcement.

c. Load Balancer SKU: The cluster uses the "standard" SKU for the load

balancer, which provides better performance and features compared to the basic

SKU.

To achieve this configuration, the following prerequisites and installation steps are followed:

Prerequisites:

• Terraform installed using Terraform official documentation

• Kubernetes cluster (AKS) [25]

• kubectl installed and configured to interact with the cluster

• Helm installed and configured to interact with the cluster

Installation Steps:

1. Clone the GitHub repository:

git clone https://github.com/ajanach/comparison-of-orchestration-

systems-for-microservices-applications.git

2. Navigate to the infrastructure directory:

cd aks/infrastructure

3. Copy the example Terraform variables file:

cp terraform.tfvars.example terraform.tfvars

The terraform.tfvars file should be edited with the correct credentials for the

Terraform service provider on Azure. This file contains configuration parameters such

as subscription ID, client ID, client secret, and tenant ID necessary for Terraform to

manage resources on Azure.

4. Initialize Terraform:

terraform init

5. Plan the Terraform deployment:

terraform plan

https://developer.hashicorp.com/terraform/tutorials/aws-get-started/install-cli
https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/
https://github.com/ajanach/comparison-of-orchestration-systems-for-microservices-applications?tab=readme-ov-file#aks---infrastructure
https://helm.sh/docs/intro/install/
https://github.com/ajanach/comparison-of-orchestration-systems-for-microservices-applications?tab=readme-ov-file#aks---infrastructure

34

The terraform plan command creates an execution plan, showing what actions

Terraform will take to achieve the desired state defined in the configuration files. It

verify that the configuration is correct before making any changes.

6. Apply the Terraform plan:

terraform apply

This command applies the changes required to reach the desired state of the

configuration, creating and configuring the AKS cluster.

7. Configure kubectl:

mkdir ~/.kube

terraform output -raw kube_config > ~/.kube/config

8. Verify the nodes:

kubectl get nodes

The output of above command should be similar to the following example output:

NAME STATUS ROLES AGE VERSION

aks-a2v2-96764596-vmss000000 Ready agent 3m36s v1.28.10

aks-a2v2-96764596-vmss000001 Ready agent 3m41s v1.28.10

AKS infrastructure overview:

After completing the installation steps, it's essential to understand the key components involved

in a typical AKS deployment. The following diagram in Figure 4 provides a generic overview

of an Azure Kubernetes Service (AKS) deployment, illustrating the critical infrastructure

elements that ensure the smooth operation of Kubernetes clusters:

1. Azure Container Registry (ACR) is used to store and manage Docker container

images that are deployed to the AKS cluster.

2. Azure Key Vault securely stores and manages sensitive information such as secrets,

keys, and certificates, which are necessary for accessing various resources within the

AKS environment.

3. Kubernetes API Server is the central management entity of the Kubernetes control

plane. It processes requests to and from the Kubernetes cluster and ensures the desired

state is maintained.

4. Log Analytics Workspace collects and analyzes data generated by resources within

the AKS environment, providing insights into performance, security, and operational

issues.

35

5. PostgreSQL Database is used to store relational data required by the “Online

Boutique” application. It serves as the backend database for various microservices.

6. User and System Node Pools are groups of nodes within the AKS cluster. User node

pools handle application workloads, while system node pools manage system-level

processes and infrastructure services.

Figure 4. Create Azure Kubernetes Service (AKS) using Terraform. Source: [26].

4.1.2. Deployment Process of Application Services

A standardized deployment process is utilized across both AKS and K3S to ensure consistency

and reproducibility. The application is deployed using YAML manifests to configure

Kubernetes resources. This approach allows for version control and easy modifications to the

deployment configuration

1. Navigate to the application services directory:

cd aks/application-services

2. Apply the Kubernetes manifests:

kubectl apply -f kubernetes-manifests.yaml

The kubernetes-manifests.yaml file contains definitions for all the Kubernetes

resources required to deploy the “Online Boutique” application, including

deployments, services, and ingress controllers.

3. Retrieve the external IP address to access the web GUI:

kubectl get service frontend-external | awk '{print $4}'

36

4. Open the browser and navigate to:

http://<external_IP>

Note: As shown in Figure 5, it may take a few minutes for the platform to be online.

Figure 5. Retrieving the external IP address and accessing the “Online Boutique” application through a browser

on Azure Kubernetes Service (AKS)

4.1.3. Deployment Process of System Services

To ensure a comprehensive monitoring and management solution for the AKS environment,

the kube-prometheus-stack is deployed using Helm. This setup includes Prometheus for

monitoring, Grafana for visualization, and other essential components.

Installation Steps:

1. Add Prometheus Community Helm Repository:

helm repo add prometheus-community https://prometheus-

community.github.io/helm-charts

helm repo update

2. Install kube-prometheus-stack:

helm install kube-prometheus-stack prometheus-community/kube-

prometheus-stack --version 61.3.1

This command installs the kube-prometheus-stack Helm chart, which includes

Prometheus, Grafana, and other monitoring tools.

3. Verify Installation:

37

kubectl --namespace default get pods -l "release=kube-prometheus-

stack"

This command checks the status of the installed pods to ensure they are running

correctly.

4. Set port forwarding to access Grafana web GUI:

kubectl port-forward svc/kube-prometheus-stack-grafana 3000:80

&

This sets up port forwarding to access the Grafana web GUI. After setting up port

forwarding, open a browser and navigate to http://localhost:3000.

As shown in Figure 6, you will be prompted for a username and password:

• Username: admin

• Password: prom-operator

Figure 6. Accessing the Grafana dashboard through port forwarding on Azure Kubernetes Service (AKS)

4.1.4. Challenges and Solutions

Deploying and managing microservices applications on AKS comes with several challenges.

Next, challenges are discussed along with possible solutions in real-world scenarios.

1. Secret Management

Challenge: Managing sensitive information such as API keys, database credentials, and

certificates securely is a critical challenge. Ensuring that these secrets are not exposed and are

http://localhost:3000/

38

managed properly across various environments is essential for maintaining the security of the

application.

Solution: Kubernetes Secrets [27] can be used to securely store and manage sensitive

information. These secrets are encrypted at rest and can be accessed by the applications running

in the cluster, ensuring that sensitive information is kept secure. Additionally, Azure Key Vault

[28] can be integrated with Kubernetes to manage secrets, keys, and certificates centrally,

offering an extra layer of security and ease of management across different environments.

2. Load Balancing

Challenge: Efficient distribution of traffic across multiple service instances is essential for

maintaining high performance and availability. This process involves managing traffic flow,

balancing loads, and ensuring seamless failovers to prevent service disruptions.

Solution: Ingress Controllers can be implemented to manage traffic routing effectively. The

NGINX Ingress Controller [17] is commonly used for this purpose, providing robust load

balancing, SSL termination, and routing capabilities.

3. Autoscaling

Challenge: Automatically adjusting the number of running instances based on demand is

crucial for handling varying loads and ensuring optimal resource utilization. This involves

scaling out by adding more instances during high traffic and scaling in by reducing instances

when demand decreases.

Solution: The Horizontal Pod Autoscaler (HPA) [29] can be utilized to automatically scale

applications based on resource utilization metrics such as CPU and memory usage. This

ensures that the application can handle increased load without manual intervention.

4. Resource Management

Challenge: Optimizing the allocation of resources to prevent overuse or underutilization is

important for cost-efficiency and performance. Proper resource management ensures that

applications have enough resources to function correctly while avoiding waste.

Solution: Resource quotas and limits can be set to ensure that applications have the necessary

resources while preventing overuse. This helps maintain a balance between resource allocation

and application performance.

39

5. Deployment Rollbacks

Challenge: Handling issues that arise during deployments and needing to roll back to a

previous stable state is a common challenge. Ensuring that deployments can be rolled back

quickly and without disruption is critical for maintaining service availability.

Solution: Use Kubernetes' built-in deployment strategies, such as rolling updates and

rollbacks, to manage application updates. This allows for safe and efficient deployment

processes, with the ability to revert to previous versions if issues are encountered.

6. Monitoring and Observability

Challenge: Implementing robust monitoring and observability to track system performance,

health, and security is essential. This includes setting up metrics collection, logging, and

alerting to proactively identify and resolve issues.

Solution: Utilize the Grafana and Prometheus stack to monitor the application and

infrastructure. Prometheus collects and stores metrics, while Grafana visualizes these metrics

in customizable dashboards. Alerting is configured within Prometheus using the Grafana

dashboard GUI, enabling easy setup and management of alerts that automatically notify the

relevant teams when predefined thresholds are exceeded, ensuring timely responses to potential

issues.

7. Cluster Management

Challenge: Managing the Kubernetes cluster itself, including node health, scaling, and

upgrades, can be complex. Ensuring that the cluster remains healthy and up to date requires

continuous attention and maintenance.

Solution: Use Azure’s managed AKS features, which handle many cluster management tasks

automatically, such as node upgrades and patching. Additionally, leverage Azure Monitor [30]

and Azure Advisor [31] to gain insights and recommendations on cluster health and

performance.

8. Network Configuration

Challenge: Configuring and managing the network settings for AKS, including VNet

integration, network policies, and ingress/egress controls, can be challenging. Ensuring secure

and efficient network traffic flow is crucial.

40

Solution: Use Azure’s native VNet integration for AKS to simplify network configuration.

Implement Kubernetes Network Policies to control traffic flow between pods and use Azure

Firewall or Network Security Groups (NSGs) to manage ingress and egress traffic securely.

9. Identity and Access Management

Challenge: Managing access to the AKS cluster and its resources securely is vital. This

includes controlling who can access the cluster, what actions they can perform, and ensuring

that applications running in the cluster can access necessary resources securely.

Solution: Utilize Azure Active Directory (AAD) integration with AKS for robust identity and

access management. Use Role-Based Access Control (RBAC) to define fine-grained access

controls and leverage Managed Identities for secure access to Azure resources from

applications running in the cluster.

4.2. Deploying on K3S

This section details the process of deploying and managing the “Online Boutique”

microservices application using K3S. The following subsections cover the configuration and

setup of the infrastructure, the deployment process for application and system services, and the

challenges encountered along with their solutions. Detailed steps and configuration files used

for this deployment can be accessed in the GitHub repository linked in “Appendix” at the end

of this document.

4.2.1. Configuration and Setup of Infrastructure

Virtual Machine Configuration in vSphere

The K3S Kubernetes cluster is set up on virtual machines configured in vSphere, as shown in

Table 9. The configuration for these VMs is outlined in the table below:

Table 9. Configuration of virtual machines for the K3S Kubernetes cluster in vSphere

Host CPUs Total RAM

(GB)

OS Disk

Size (GB)

IP Address

ajanach-thesis-cp-01 2 4.06 50 10.10.48.151

ajanach-thesis-cp-02 2 4.06 50 10.10.48.152

41

ajanach-thesis-cp-03 2 4.06 50 10.10.48.153

ajanach-thesis-wn-01 2 4.06 50 10.10.48.154

ajanach-thesis-wn-02 2 4.06 50 10.10.48.155

The vCenter web UI on Figure 7 illustrates the setup process of a K3S Kubernetes cluster on

virtual machines (VMs) configured within a vSphere environment. This visual representation

demonstrates the creation and configuration of the five VMs.

Figure 7. vCenter Web UI Displaying the Creation of Five Virtual Machines for the K3S Kubernetes Cluster

Ansible Setup

Prerequisites:

• Ansible installed on workstation machine,

• K3s cluster [25],

• kubectl installed and configured,

• Helm installed and configured.

Ansible [16] is used to automate the configuration and deployment of the K3S cluster. The

following steps outline the Ansible setup:

1. Clone the GitHub repository:

https://docs.ansible.com/ansible/latest/installation_guide/installation_distros.html
https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/
https://github.com/ajanach/comparison-of-orchestration-systems-for-microservices-applications?tab=readme-ov-file#k3s---infrastructure
https://helm.sh/docs/intro/install/
https://github.com/ajanach/comparison-of-orchestration-systems-for-microservices-applications/blob/master/k3s/system-services/README.md#step-1-add-prometheus-community-helm-repository

42

git clone https://github.com/ajanach/comparison-of-orchestration-

systems-for-microservices-applications.git

2. Navigate to the infrastructure directory:

cd k3s/infrastructure

3. Edit the inventory file, which specifies the IP addresses of the control plane and

worker nodes in the cluster.

[master_1]

ajanach-thesis-cp-01 ansible_host=<IP_CONTROL_PLANE_01>

[master_2]

ajanach-thesis-cp-02 ansible_host=<IP_CONTROL_PLANE_02>

ajanach-thesis-cp-03 ansible_host=<IP_CONTROL_PLANE_03>

[worker]

ajanach-thesis-wn-01 ansible_host=<IP_WORKER_01>

ajanach-thesis-wn-02 ansible_host=<IP_WORKER_02>

[production:children]

master_1

master_2

worker

4. Edit ansible.cfg. This configuration file sets the defaults for Ansible operations,

including the inventory file location and user credentials.

[defaults]

inventory = inventory

remote_user = <USERNAME>

ask_pass = false

[privilege_escalation]

become = true

become_user = root

become_method = sudo

become_ask_pass = false

5. Edit vars.yaml. This file includes variables used by the Ansible playbooks, such as the

IP address of the K3S server.

k3s_server_ip: "<IP_CONTROL_PLANE_01>"

6. Test reachability. Use Ansible to ping all specified nodes and ensure they are reachable.

cd k3s/infrastructure

ansible -i inventory all -m ping

7. Run Ansible playbook to install K3S. This playbook installs K3S on the specified nodes

in inventory.

ansible-playbook -i inventory k3s_install.yaml

8. Verify Cluster Availability: Use kubectl to check the status of the nodes and ensure

they are ready.

kubectl get nodes

43

Example output:

NAME STATUS ROLES AGE VERSION

ajanach-thesis-cp-01 Ready control-plane,etcd,master 3d17h v1.29.6+k3s2

ajanach-thesis-cp-02 Ready control-plane,etcd,master 3d17h v1.29.6+k3s2

ajanach-thesis-cp-03 Ready control-plane,etcd,master 3d17h v1.29.6+k3s2

ajanach-thesis-wn-01 Ready <none> 3d17h v1.29.6+k3s2

ajanach-thesis-wn-02 Ready <none> 3d17h v1.29.6+k3s2

The figure Figure 8 illustrates the architecture of the K3s setup used in this specific case

scenario, showing how the control plane and worker nodes are configured within the cluster. It

reflects the deployment strategy tailored to the current requirements, providing a clear view of

the infrastructure as implemented.

Figure 8. K3s Infrastructure for Online Boutique Deployment

In contrast to the specific setup shown in Figure 8, Figure 9 presents a recommended high-

availability architecture for K3s, suitable for production environments. This setup includes

multiple control planes and worker nodes to enhance resilience and scalability. While Figure 8

details the configuration used in this case, Figure 9 offers a broader, more robust approach to

deploying K3s in scenarios that demand higher availability and fault tolerance.

44

Figure 9. Recommended High-Availability K3s Setup. Source: [32].

4.2.2. Deployment Process of Application Services

Deploying the “Online Boutique” application on the K3S cluster involves applying Kubernetes

manifests to configure and launch the services. It is important to note that the YAML manifests

used for deploying the application are the same for both AKS and K3S, ensuring consistency

across different environments. The following steps outline the deployment process:

1. Navigate to the Application Services Directory:

cd k3s/application-services

2. Apply the Kubernetes Manifests:

kubectl apply -f kubernetes-manifests.yaml

This command applies the Kubernetes manifests, creating the necessary resources

such as deployments, services, and configurations for the application.

3. Retrieve the External IP Address to Access the Web GUI:

kubectl get service frontend-external | awk '{print $4}'

A list of IP addresses will be provided, each representing the IP address of a node.

This means that the application is available through the IP address of any node.

4. Access the Application:

Open a browser and navigate to http://<external_IP>. As shown in Figure 10, it

may take a few minutes for the application to be online.

45

Figure 10. Retrieving the external IP address and accessing the “Online Boutique” application through a

browser on K3s

4.2.3. Deployment Process of System Services

The process of deploying system services on K3S is the same as described in Chapter 4.1.3 for

AKS. This involves setting up the kube-prometheus-stack using Helm to ensure comprehensive

monitoring and management of the K3S environment. The deployment includes Prometheus

for monitoring, Grafana for visualization, and other essential components.

4.2.4. Challenges and Solutions

Deploying and managing microservices applications on K3S comes with several challenges.

Here, real challenges are discussed along with solutions to overcome them, including real-

world scenarios.

1. Resource Constraints

Challenge: K3S is designed for lightweight environments, but resource constraints can still

pose challenges. Ensuring adequate resource allocation and monitoring is crucial.

Solution: Optimize resource usage by configuring appropriate resource limits and requests for

each microservice. Use monitoring tools like Prometheus and Grafana to track resource usage

and identify bottlenecks and underutilization.

46

2. Networking Complexity

Challenge: Managing network configurations and ensuring reliable communication between

services can be complex.

Solution: Utilize the built-in networking capabilities of K3S, such as the Flannel [33] or Calico

[24] network plugins. Ensure proper configuration of network policies and security groups to

facilitate secure and reliable communication.

3. High Availability

Challenge: Achieving high availability in a resource-constrained environment can be difficult,

especially with limited nodes.

Solution: Deploy multiple control plane nodes to ensure redundancy. Configure K3S to use an

external database for storing cluster state, enhancing resilience and availability.

4. Security

Challenge: Ensuring robust security in a lightweight Kubernetes environment is essential.

Solution: Implement best practices for securing the cluster, including using role-based access

control (RBAC), enabling mutual TLS (mTLS) for service communication, and regularly

updating and patching the cluster components.

5. Integration with CI/CD Pipelines

Challenge: Integrating K3S with continuous integration and continuous deployment (CI/CD)

pipelines can be challenging.

Solution: Use tools like Jenkins, GitLab CI, or GitHub Actions to automate the deployment

process. Configure these tools to interact with the K3S cluster using kubectl and Helm,

ensuring a smooth and automated deployment process.

47

5. Performance and Cost Analysis

5.1. Resource Utilization

This section evaluates the resource utilization of Azure Kubernetes Service (AKS) and K3S

clusters. The analysis focuses on CPU, memory usage, storage, and network performance,

emphasizing the different architectures and configurations that contribute to resource

consumption. The measurements are taken during the idle state of the clusters, with the “Online

Boutique” application and necessary system services deployed but not actively processing user

interactions.

AKS, being a cloud-based Kubernetes service, runs additional operational and management

containers compared to K3S. This results in different resource utilization patterns between the

two. AKS utilizes Calico as its Container Network Interface (CNI), which provides robust

networking capabilities suited for complex environments, whereas K3S employs Flannel, a

lightweight CNI, contributing to lower system overhead [34].

5.1.1. Comparison of Pods and Containers

A critical factor influencing resource utilization and performance in Kubernetes clusters is the

number and type of pods and containers running within the environment. This section provides

a detailed comparison between Azure Kubernetes Service (AKS) and K3S, focusing on the

distinct workloads managed by each platform. By examining the specific pods and containers

deployed, we can gain insights into how each cluster is configured and the implications this

has on resource consumption.

In AKS, the cluster runs a greater number of system-related pods, which include cloud-specific

components such as monitoring agents, network management tools, and storage interface

drivers. These additional pods are integral to the cloud-based operations and management

features provided by Azure. Opposite, K3S, being a lightweight Kubernetes distribution, is

designed with minimal overhead and runs fewer system pods. The absence of cloud-specific

containers in K3S leads to lower baseline resource usage, making it an ideal choice for

environments where efficiency and simplicity are paramount.

48

Example of AKS Pods vs. K3S Pods

The Table 10 compares the pods running in AKS and K3S, showcasing both the similarities

and differences in the workloads they manage:

Table 10. Detailed Comparison of Pod and Container Distribution Between Azure Kubernetes Service (AKS)

and K3S

Component AKS (Azure Kubernetes Service) K3S (Lightweight

Kubernetes)

Total Number of Pods 42 Pods 30 Pods

Application Pods of

“Online Boutique”

15 Pods 15 Pods

System Services 7 Pods (e.g., kube-prometheus-stack) 7 Pods (e.g., kube-

prometheus-stack)

Cloud-Specific

Components

Yes (e.g., cloud node managers, CSI

drivers, network management tools)

No

Network Management

Tools

Yes (e.g., Calico) Yes (e.g., Flannel)

Storage Interface

Drivers

Yes (e.g., AzureDisk CSI, AzureFile

CSI)

No

Baseline Resource

Usage

Higher (due to additional cloud-

specific containers)

Lower (minimal overhead)

Kubernetes System

Pods

20 Pods (e.g., kube-proxy, metrics-

server, coredns)

8 Pods (e.g., kube-proxy,

metrics-server, coredns)

5.1.2. CPU and Memory Usage

The analysis of CPU and memory utilization provides insight into how each platform manages

workloads and optimizes resource use. The Table 11 and Table 12 summarize the key metrics

for each worker node in both clusters.

49

Table 11. AKS Cluster Resource Utilization (Idle State with “Online Boutique” Deployed)

Node CPU

Busy (%)

System

Load (%)

RAM

Used (%)

Root FS

Used (%)

Worker Node 1 42.30 98.50 54.10 54.50

Worker Node 2 23.30 99.50 36.00 50.90

Table 12. K3S Cluster Resource Utilization (Idle State with “Online Boutique” Deployed)

Node CPU Busy

(%)

System

Load (%)

RAM

Used (%)

Root FS

Used (%)

Worker Node 1 12.50 17.50 62.60 33.80

Worker Node 2 3.70 5.50 42.90 18.10

AKS Nodes: The AKS nodes exhibit higher system loads, with Worker Node 2 reaching

99.5%, despite lower CPU utilization. This suggests that the additional containers and the

Calico CNI contribute significantly to overhead. In AKS, there are 42 running pods across the

cluster, which include operational containers such as cloud node managers, CSI (Container

Storage Interface) drivers, and monitoring agents. These extra containers are essential for

cloud-specific operations and management, leading to increased resource consumption

K3S Nodes: K3S nodes demonstrate lower CPU, and system loads due to Flannel's lightweight

nature and the absence of additional cloud-based operational containers. The K3S cluster has

30 running pods, which is fewer than AKS, reflecting the absence of those additional cloud-

specific components. Despite this, K3S nodes show higher RAM usage, which suggests a

different memory allocation strategy that potentially enhances real-time application

performance by allocating more resources to active processes.

5.1.3. Storage and Network Performance

Storage and network performance are critical factors in understanding how efficiently data is

handled and transferred across the cluster. The metrics are analyzed to identify key differences

in performance between AKS and K3S, as shown in Table 13.

50

Table 13. Storage and Network Performance (Idle State with “Online Boutique” Deployed)

Cluster Node Root FS

Used (%)

Network Traffic Insights

AKS Worker Node 1 54.50 Moderate activity with occasional peaks

AKS Worker Node 2 50.90 Consistently moderate to high traffic

K3S Worker Node 1 33.80 Low variability, minimal traffic

K3S Worker Node 2 18.10 Stable and minimal traffic

Storage Utilization: AKS nodes have higher filesystem usage due to the additional

components and services required for cloud operations, such as persistent volume management

and network overlays. In contrast, K3S nodes maintain lower filesystem usage, benefiting from

the absence of these additional layers.

Network Traffic: The AKS nodes experience more network traffic variability, attributed to

the extensive inter-service communications facilitated by Calico. This variability could impact

latency and performance in data-intensive applications. K3S's network traffic is more stable

and lower due to Flannel's simplified network operations and fewer services running

concurrently.

The Figure 11 and Figure 12 demonstrate detailed metrics from Grafana dashboards to provide

a visual representation of the discussed metrics.

51

Figure 11. Grafana AKS Cluster Resource Utilization

52

Figure 12. Grafana K3S Cluster Resource Utilization

5.2. Benchmark Results

This section evaluates the operational performance of AKS and K3S using three primary tools:

Apache AB, K6, and Sysbench. These tools measure various metrics, including requests per

second, response times, and system benchmarks. The analysis identifies key differences in

performance and scalability between the two platforms. The configuration includes:

• Apache Bench (AB): Simulates high concurrency levels to evaluate the maximum

request-handling capabilities of each platform.

• K6: Evaluates the platforms under various virtual user (VU) loads, simulating real-

world traffic patterns.

53

• Sysbench: Measures CPU and memory performance to assess the raw computational

capacity available to each cluster.

Test Setup:

The performance tests are conducted in a controlled environment to ensure comparability

between AKS and K3S. Both platforms are configured similarly, with two worker nodes each

running the “Online Boutique” microservices application. For more realistic load testing, one

container for the front-end service is deployed on each worker node, ensuring that both nodes

experience the load during the tests.

5.2.1. Apache AB Results

The AB tests are conducted with 1,000 requests at a concurrency level of 100. This setup is

designed to evaluate the request-handling capabilities of both AKS and K3S under a moderate

load, ensuring that the application can effectively manage concurrent requests without being

overwhelmed. The following metrics are recorded:

• Average Requests per Second: This metric indicates the number of requests

successfully processed by the server each second.

• Average Time per Request: This metric measures the average time taken to manage

a single request, reflecting the platform's responsiveness.

A detailed guide on setting up and running the AB command is available on GitHub. The

command used for testing is:

ab -k -n 1000 -c 100 -l -H "Accept-Encoding: gzip, deflate"

http://57.153.130.215/

This command performs a performance test on the index page of the "Online Boutique"

application, accessible via the URL http://57.153.130.215/. Replace http://57.153.130.215/

with the actual URL of your service. Below is a description of what each parameter does:

• -k: Sends the Keep-Alive header to maintain open connections.

• -n 1000: Number of requests to make.

• -c 100: Number of concurrent requests to simulate.

• -l: Accepts response sizes larger than the internal memory buffer.

• -H Accept-Encoding: gzip, deflate: Used to compress the output for more efficient

data transfer. The use of mod-deflate compresses the text/html output, which

significantly impacts the overall performance of the web server.

https://github.com/ajanach/comparison-of-orchestration-systems-for-microservices-applications/blob/master/benchmark/ab_http_bench/README.md

54

The results of the Apache AB benchmark are presented in Table 14:

Table 14. Apache AB Benchmark Results for AKS and K3S

Metric AKS K3S

Average requests per second 44.28 112.27

Average time per request (ms) 22.58 8.90

As shown in Figure 13, these results highlight the superior request-handling efficiency of K3S

compared to AKS. K3S processed more than twice the number of requests per second on

average and had a significantly lower average time per request.

Figure 13. Apache AB Benchmark Results for AKS and K3S

55

The diagram on Figure 14 visually represents the Apache AB benchmark results, illustrating

the differences in performance between the two platforms.

Figure 14. Comparison of Average Requests per Second Between AKS and K3S

System load analysis of Apache AB benchmark:

To further understand the impact of the AB testing on system resources, Grafana dashboards

were used to monitor the load on both worker nodes in each cluster. Grafana, utilizing

Prometheus and Node Exporter, provided real-time insights into CPU, memory, and network

usage during the tests.

The results show that there was no significant impact on CPU, RAM, or disk usage in both

AKS and K3S clusters during the tests. However, as shown in Figure 15 and Figure 16 both

clusters experienced a considerable increase in network traffic.

56

Figure 15. System Load on AKS Worker Nodes During Apache AB Testing

57

Figure 16. System Load on K3S Worker Nodes During Apache AB Testing

5.2.2. K6 Results

The goal of this test is to evaluate how well each orchestration platform can handle realistic

workloads that mirror user behavior, which is critical for ensuring a robust user experience.

Unlike synthetic benchmarks such as Apache AB, which primarily focus on request-handling

capabilities under stress.

The K6 test script is designed to simulate a typical user journey through the "Online Boutique"

application. This journey includes visiting the homepage, browsing products, adding items to

the cart, proceeding to checkout, and returning to the homepage. These steps represent the core

interactions a user would have on the “Online Boutique” site, making the test highly relevant

for evaluating the performance of AKS and K3S in a production-like environment.

58

The test script is structured into three stages:

• Ramp-up to 100 VUs over 30 seconds: This stage evaluates the platform's ability to

manage increasing loads quickly.

• Ramp-up to 200 VUs for 30 seconds: This stage evaluates the system's stability under

a high, consistent load.

• Ramp-down to 0 VUs over 30 seconds: This stage examines how the platform

manages decreasing traffic.

The script is structured as follows:

import http from 'k6/http';

import { check, group, sleep } from 'k6';

import { randomIntBetween } from 'https://jslib.k6.io/k6-

utils/1.2.0/index.js';

export let options = {

 stages: [

 { duration: '30s', target: 100 },

 { duration: '30s', target: 200 },

 { duration: '30s', target: 0 },

],

};

const BASE_URL = 'http://10.10.48.155/'; // replace with your Online

Boutique URL

export default function () {

 group('Visit Homepage', function () {

 let res = http.get(`${BASE_URL}/`);

 check(res, {

 'Homepage loaded successfully': (r) => r.status === 200,

 });

 sleep(randomIntBetween(1, 3));

 });

 group('Browse Products', function () {

 let res = http.get(`${BASE_URL}/product/0PUK6V6EV0`);

 check(res, {

 'Product page loaded successfully': (r) => r.status === 200,

 });

 sleep(randomIntBetween(1, 3));

59

 res = http.get(`${BASE_URL}/product/9SIQT8TOJO`);

 check(res, {

 'Another product page loaded successfully': (r) => r.status ===

200,

 });

 sleep(randomIntBetween(1, 3));

 });

 group('Add to Cart', function () {

 let res = http.post(`${BASE_URL}/cart`, JSON.stringify({

product_id: '0PUK6V6EV0', quantity: 1 }), {

 headers: { 'Content-Type': 'application/json' },

 });

 check(res, {

 'Product added to cart': (r) => r.status === 200,

 });

 sleep(randomIntBetween(1, 3));

 res = http.post(`${BASE_URL}/cart`, JSON.stringify({ product_id:

'9SIQT8TOJO', quantity: 1 }), {

 headers: { 'Content-Type': 'application/json' },

 });

 check(res, {

 'Another product added to cart': (r) => r.status === 200,

 });

 sleep(randomIntBetween(1, 3));

 });

 group('Proceed to Checkout', function () {

 let res = http.get(`${BASE_URL}/cart`);

 check(res, {

 'Cart page loaded successfully': (r) => r.status === 200,

 });

 sleep(randomIntBetween(1, 3));

 res = http.post(`${BASE_URL}/cart`, JSON.stringify({

 email: 'user@example.com',

 street_address: '123 Main St',

 zip_code: '12345',

 city: 'Somewhere',

 state: 'CA',

 country: 'US',

 credit_card_number: '1234 5678 9012 3456',

 credit_card_expiration_month: '12',

 credit_card_expiration_year: '2030',

60

 credit_card_cvv: '123',

 }), {

 headers: { 'Content-Type': 'application/json' },

 });

 check(res, {

 'Checkout completed': (r) => r.status === 200,

 });

 sleep(randomIntBetween(1, 3));

 });

 group('Return to Homepage', function () {

 let res = http.get(`${BASE_URL}/`);

 check(res, {

 'Homepage loaded after checkout': (r) => r.status === 200,

 });

 sleep(randomIntBetween(1, 3));

 });

}

Code 2. K6 test script for simulating virtual user load on AKS and K3S

To execute the test script provided in Code 2, use the following command:

k6 run load_test.js

A detailed guide on setting up and running the K6 tests is available on GitHub.

The K6 tests generated several key metrics that offer insights into the performance of AKS and

K3S. These metrics include:

• Group duration (avg): The average time taken to complete the entire user journey,

from visiting the homepage to checking out and returning to the homepage.

• HTTP request duration (avg): The average time taken to process individual HTTP

requests during the user journey.

• Total iterations: The number of complete user journeys processed during the test.

• Total HTTP requests (http_reqs): The total number of HTTP requests made during

the test.

• Data received and data sent: The total amount of data exchanged between the client

and server during the test, which includes data retrieved from the server and data sent

by the client, such as form submissions.

• Iteration duration (avg): The average time taken for one complete iteration of the user

journey.

https://github.com/ajanach/comparison-of-orchestration-systems-for-microservices-applications/tree/master/benchmark/k6_http_bench

61

Table 15 summarizes the key performance metrics obtained from the K6 testing on AKS and

K3S.

Table 15. K6 Benchmark Results for AKS and K3S

Metric AKS K3S

Group Duration (avg) 3.78 s 3.28 s

HTTP Request Duration (avg) 179.75 ms 20.5 ms

Total Iterations 425 471

Total Requests (http_reqs) 6800 7536

Data Received 28 MB 31 MB

Data Sent 1.4 MB 1.5 MB

Iteration Duration (avg) 18.9 s 16.41 s

The K6 performance tests reveal that K3S achieves faster response times and handles more

requests compared to AKS when running the "Online Boutique" application. Specifically, K3S

demonstrates a significantly lower average HTTP request duration (20.5 ms vs. 179.75 ms) and

completes a higher number of iterations and total requests.

However, it is important to interpret these results within the broader context of the underlying

infrastructure and operational environments, which is discussed in detail in Chapter 5.2.3,

“System Benchmarking Results”. As shown in Figure 17, AKS operates within the Azure cloud

ecosystem, which involves additional layers of management and cloud services that may

impact raw performance metrics. Factors such as the hypervisor overhead, the specific CPU

performance, and the cloud services running within the AKS cluster can contribute to the

observed differences in performance.

62

Figure 17. K6 Benchmark Results for AKS and K3S

63

The diagram on Figure 18 visually represents the K6 benchmark results, illustrating the

differences in performance between the two platforms.

Figure 18. Diagram of K6 Benchmark Results for AKS and K3S

System load analysis of K6 benchmark:

To further understand the impact of the K6 testing on system resources, Grafana dashboards

were used to monitor the load on both worker nodes in each cluster. Grafana, utilizing

Prometheus and Node Exporter, provided real-time insights into CPU, memory, and network

usage during the tests. The results, as shown in Figure 19 and Figure 20, indicate a significant

impact on CPU usage in both AKS and K3S clusters during the tests. However, there was no

significant impact on RAM or disk usage. Both clusters experienced a considerable increase in

network traffic, similar to the results observed in the AB testing.

64

Figure 19. System Load on AKS Worker Nodes During K6 Testing

65

Figure 20. System Load on K3S Worker Nodes During K6 Testing

5.2.3. System Benchmarking Results

The benchmarking is conducted using Sysbench, a multi-threaded benchmark tool that

evaluates system parameters such as CPU speed, memory transfer rate, and file I/O throughput.

For consistency, the tests are performed on one worker node from each cluster, as both nodes

in each cluster are configured identically.

Evaluate parameters and metrics:

1. CPU Test: Measures the number of prime numbers generated per second, providing an

indication of CPU efficiency.

2. Memory Test: Evaluates the memory transfer speed by performing read operations

with a specified block size.

3. File I/O Test: Assesses the read/write throughput and file synchronization (fsync) rates,

which are crucial for applications with intensive disk operations.

Table 16 presents the results of the system benchmarking for AKS and K3S:

66

Table 16. System Benchmark Results Comparison for AKS and K3S

Metric AKS K3S

CPU Speed (events/s) 8050.65 20219.14

Memory Transfer Rate (MiB/s) 451.7 1339.27

Read Throughput (MiB/s) 6.78 36.19

Write Throughput (MiB/s) 4.52 24.13

Reads/s 433.73 2316.35

Writes/s 289.16 1544.23

Fsyncs/s 925.69 4942.25

The results indicate that K3S significantly outperforms AKS in all measured metrics. The CPU

speed of K3S is more than twice that of AKS, highlighting its superior computational

efficiency. Similarly, K3S demonstrates higher memory transfer rates and better I/O

throughput, suggesting that it can handle more demanding workloads with greater resource

efficiency.

67

The diagram on Figure 21 is visually represents the system benchmark results for AKS and

K3S, highlighting the differences in performance across key metrics

Figure 21. System Benchmark Results for AKS and K3S

68

AKS worker node sysbench output summary:

The performance results for the AKS and K3S worker nodes during the Sysbench tests are

summarized in Table 17 and Table 18.

Table 17. AKS worker node sysbench output summary

CPU test Memory test File I/O test

CPU speed: 8,050.65

events per second

Latency (ms): avg: 0.12,

max: 29.49, 95th percentile:

0.08

Total operations: 3,072

(451.70 per second)

Transfer rate: 451.70

MiB/sec

Latency (ms): avg: 2.21,

max: 37.02, 95th percentile:

6.67

File operations: reads/s:

433.73, writes/s: 289.16,

fsyncs/s: 925.69

Throughput: read, MiB/s:

6.78, written, MiB/s: 4.52

Latency (ms): avg: 0.60,

max: 180.51, 95th

percentile: 2.66

Table 18. K3S worker node sysbench summary

CPU test Memory test File I/O test

CPU Speed: 20,219.14

events per second

Latency (ms): avg: 0.05,

max: 2.03, 95th percentile:

0.06

Total Operations: 3,072

(1,339.27 per second)

Transfer Rate: 1,339.27

MiB/sec

Latency (ms): avg: 0.74,

max: 1.69, 95th percentile:

1.04

File Operations: reads/s:

2,316.35, writes/s:

1,544.23, fsyncs/s: 4,942.25

Throughput: read: 36.19

MiB/s, written: 24.13

MiB/s

Latency (ms): avg: 0.11,

max: 7.32, 95th percentile:

0.65

69

Analysis of lscpu output:

The lscpu command provides details about the CPU architecture and configuration for worker

nodes on AKS and K3S. Below is a comparison and analysis based on the lscpu outputs, as

shown in Table 19.

Table 19. Highlights of lscpu output

AKS worker node lscpu output K3S worker node lscpu output

Architecture: x86_64

CPU(s): 2

Model name: Intel(R)

Xeon(R) CPU E5-2673 v4 @ 2.30GHz

Thread(s) per core: 1

Core(s) per socket: 2

Socket(s): 1

BogoMIPS: 4589.37

Hypervisor vendor: Microsoft

L1d cache: 32 KiB

L1i cache: 32 KiB

L2 cache: 256 KiB

L3 cache: 50 MiB

Architecture: x86_64

CPU(s): 2

Model name: Intel(R)

Xeon(R) Silver 4114 CPU @ 2.20GHz

Thread(s) per core: 1

Core(s) per socket: 1

Socket(s): 2

BogoMIPS: 4389.68

Hypervisor vendor: VMware

L1d cache: 32 KiB

L1i cache: 32 KiB

L2 cache: 1 MiB

L3 cache: 27.5 MiB

Explanation of Results

The K3S configuration shows better performance in system benchmarks compared to AKS,

despite both having a similar number of cores and threads. Several factors contribute to this

performance difference:

1. Cache Hierarchy: K3S has a larger L2 cache per instance (1 MiB) compared to AKS

(256 KiB), which can significantly enhance processing speed for memory-intensive

tasks.

2. CPU Architecture: Although both systems use Xeon processors, the architecture and

generation differences might lead to variations in handling workloads. The Xeon Silver

4114 on K3S, with a different cache architecture and newer optimizations, shows

improved throughput and efficiency.

70

3. Hypervisor Overhead: The hypervisor technology used (Microsoft for AKS and

VMware for K3S) might also affect how efficiently CPU resources are allocated and

managed, impacting the overall performance.

4. Virtualization and Execution Environment: The difference in virtualization

platforms (Microsoft vs. VMware) may lead to variations in CPU performance due to

different management of resources and overheads.

5. Memory Transfer Rates: The higher memory transfer rate observed in K3S indicates

better memory handling, due to the configuration and optimizations in the virtualization

stack or hardware capabilities.

Clarification on experimental constraints:

It is important to clarify that due to limitations in accessing identical hardware configurations

in the Azure cloud, it was not possible to set up an AKS environment with the same or

equivalent CPU and memory specifications as the on-premises K3S setup. As a result, while

the hardware configurations chosen were the closest possible matches, they were not identical.

This discrepancy introduces a variable that complicates direct comparison between the two

platforms. Consequently, the superior performance observed in K3S is likely influenced by

these hardware differences rather than a fundamental advantage of K3S as an orchestration

tool.

Therefore, while the results from the benchmarking tests provide valuable insights into the

performance of AKS and K3S under specific conditions, they should not be interpreted as

definitive evidence of the superiority of one orchestration tool over the other.

5.3. Cost Analysis

This section provides a detailed cost analysis of deploying the "Online Boutique" microservices

application on Azure Kubernetes Service (AKS) versus K3S. The analysis is grounded in the

methodology provided by the Azure Total Cost of Ownership (TCO) Calculator. This tool

allows for a comprehensive comparison of costs between on-premises infrastructure and cloud

deployments on Azure, using industry-standard pricing assumptions. The goal is to outline the

methodology used to estimate the total cost of ownership for both platforms and to present a

comparative cost analysis based on these estimates.

71

5.3.1. Cost Calculation Methodology

This thesis utilizes the Azure Total Cost of Ownership (TCO) Calculator, an official online tool

provided by Microsoft Azure [35]. This tool is designed to help businesses estimate the cost

savings that can be achieved by migrating workloads to Azure. The TCO Calculator compares

the costs associated with running on-premises infrastructure against deploying in Azure,

considering a wide range of factors such as hardware, software, operational, and maintenance

expenses.

U.S. average pricing assumptions:

The analysis uses U.S. average pricing assumptions provided by the TCO Calculator, which

are based on industry-standard values recognized by Nucleus Research [36]. These

assumptions are crucial for creating a reliable and consistent cost comparison between AKS

and K3S. Below are the specific assumptions used.

• Software Assurance Coverage (Azure Hybrid Benefit): This analysis includes the

Azure Hybrid Benefit, which allows organizations to apply their existing Windows and

SQL Server licenses with Software Assurance to Azure virtual machines. This benefit

can lead to significant cost savings by reducing the need to purchase new cloud licenses.

• Geo-Redundant Storage (GRS): This assumption covers the cost of replicating data

to a secondary region, enhancing disaster recovery capabilities but increasing storage

expenses. This feature enhances data availability and disaster recovery capabilities,

though it adds to storage costs.

• Virtual Machine Costs: The calculator allows the exclusion of cost recommendations

for lower-cost, less performing virtual machines, ensuring that the analysis focuses on

more relevant and widely used VM types.

• Electricity Costs: Electricity costs are estimated based on the average U.S. price per

kilowatt-hour, reflecting the power consumption necessary for running servers and

maintaining data center operations.

• Storage Costs: Storage costs are detailed for various types of storage, including SAN,

NAS, and Blob storage. Additionally, an annual enterprise storage software support

cost is included, reflecting ongoing maintenance and support expenses.

• IT Labor Costs: The model assumes that one IT administrator can manage a specific

number of physical servers or virtual machines, with an average hourly rate reflecting

the cost of IT staff required to maintain and manage infrastructure.

https://azure.microsoft.com/en-us/pricing/tco/calculator/

72

• Hardware Costs: Detailed hardware costs are included, covering various

configurations of processors, cores, and RAM. These costs reflect the price of

acquiring, maintaining, and replacing physical hardware over time.

• Networking Costs: Network-related costs are calculated as a percentage of the overall

hardware and software costs, including expenses for network hardware, maintenance,

and data transfer.

• Data Center Costs: The analysis includes the costs associated with constructing,

maintaining, and operating data centers. This encompasses initial setup costs, ongoing

operational expenses, and infrastructure maintenance.

• Virtualization Costs: The cost of virtualization is considered, including the per virtual

machine, per month, infrastructure cost for load balancing, backup, and patching.

• Database Costs: The TCO model also accounts for database-related expenses,

including licensing for SQL Server and other database management systems.

• Data Warehouse Costs: The costs associated with data warehouses are also

considered, including the price per 2-core pack for Windows Server Standard, the

number of devices per server (CAL), and related licensing and infrastructure costs.

These costs reflect the financial implications of deploying and maintaining data

warehouse solutions.

Calculation approach:

To ensure an accurate comparison, the TCO Calculator estimates the total cost of ownership

for deploying the 'Online Boutique' application, both on-premises and in Azure. The process

involves the following steps:

1. Define Workload: The current on-premises infrastructure for running the "Online

Boutique" is detailed, including the number of servers, storage requirements, and

network components.

2. Customize Cost Inputs: Cost details for the on-premises setup, such as hardware

purchase, maintenance, power, and cooling, are entered into the calculator.

3. Review Azure Costs: The TCO Calculator estimates the equivalent costs on Azure,

considering virtual machines, storage, networking, and additional services like Azure

Kubernetes Service (AKS).

73

4. Analyse Results: The tool provides a detailed comparison, highlighting potential cost

savings or increases over a specified period. This analysis helps in understanding the

financial implications of migrating to Azure or maintaining an on-premises K3S setup.

Objective of the methodology:

The primary objective of using the TCO Calculator in this analysis is to establish a standardized

methodology that can be applied to any market, application, or orchestration tool. While the

specific cost figures are based on U.S. averages, the methodology itself is universal, allowing

for its application in various contexts with appropriate adjustments.

5.3.2. Comparative Cost Analysis

This section outlines the comparative cost analysis between Azure Kubernetes Service (AKS)

and K3S using the Total Cost of Ownership (TCO) Calculator provided by Microsoft Azure.

The analysis is based on the inputs and assumptions defined in the TCO Calculator.

Defining workloads

The first step in the TCO Calculator is to define the workloads that will be used in the analysis.

For this comparative study, the workloads represent the on-premises infrastructure that would

be required to run the K3S cluster:

1. Servers:

a. Workload Type: Windows/Linux Server

b. Environment: Virtual Machines

c. Operating System: Linux

d. VMs: 5 (three control plane nodes and two worker nodes for the K3S cluster)

e. Virtualization: VMware

f. Core(s): 2 per VM

g. RAM (GB): 4 per VM, optimized by CPU

2. Storage:

a. The on-premises infrastructure uses a total of 250 GB SSD storage, divided

across the five VMs.

b. Backup: 250 GB for backup storage to ensure data integrity and recovery.

c. Archive: 0 GB allocated for archiving, as this scenario does not include long-

term storage.

d. IOPS: Input/Output Operations Per Second set to 0, reflecting a standard

configuration without high-demand storage performance requirements.

74

3. Networking:

a. Outbound bandwidth is set to 50 GB with the destination region specified as

West Europe. This bandwidth allocation reflects the typical network traffic

generated by the K3S cluster during normal operations.

Adjusting assumptions

After defining the workloads, the TCO Calculator allows for adjustments in various

assumptions to better reflect the real-world conditions under which these platforms operate.

1. Software Assurance Coverage:

a. Disabled: Neither Windows Server nor SQL Server Software Assurance is

enabled in this scenario, meaning Azure Hybrid Benefit (AHB) is not applied.

This choice results in a more generalized cost estimate without the potential

savings provided by AHB.

2. Geo-Redundant Storage (GRS):

a. Disabled: Data replication to a secondary region (GRS) is not enabled, which

lowers storage costs but also reduces data redundancy.

3. Virtual Machine Costs:

a. The option to recommend cost-optimized virtual machines, such as the Bs-

series, is disabled. This setting ensures that the cost estimates are not influenced

by specific VM recommendations, allowing for a broader and more applicable

comparison.

4. Electricity Costs:

a. Set at $0.1334 per kWh, reflecting the average electricity cost in the U.S. This

is an important factor in the total cost of ownership for on-premises

infrastructure, as energy consumption directly impacts operational expenses.

5. Storage Costs:

a. Procurement Costs:

b. SAN-SSD: $0.4 per GB

c. SAN-HDD: $0.2 per GB

d. NAS: $0.2 per GB

e. Blob Storage: $0.2 per GB

f. Annual Enterprise Storage Software Support Cost: 10% of the storage

procurement costs.

75

g. Cost per Tape Drive: $160, though this is not directly applied in the current

scenario.

6. IT Labor Costs:

a. Physical Servers per Administrator: 100

b. Virtual Machines per Administrator: 120

c. Hourly Rate for IT Administrator: $23, reflecting the average cost of IT labor

in the U.S.

7. Other Assumptions:

a. Default Values: For other assumptions in the TCO model, including hardware

costs, software costs, virtualization costs, data center costs, networking costs,

database costs, and data warehouse costs, the default values provided by the

TCO Calculator are used. These default values are industry-standard and

provide a consistent basis for comparison.

Report and results analysis

After defining workloads and adjusting assumptions, the TCO Calculator generates a detailed

report comparing the five-year total cost of ownership for on-premises K3S infrastructure

versus on Azure.

The report indicates that over five years, migrating from an on-premises K3S setup to Azure

could result in savings of approximately $12,012.00. This is primarily due to Azure’s efficient

infrastructure management, reduced data center costs, and lower IT labor requirements, as

illustrated in Figure 22.

76

Figure 22. Total Cost of Ownership Over 5 Years: On-Premises vs. Azure.

A breakdown of costs shows that on-premises expenses are primarily driven by compute

(50%), data center (11%), and IT labor (34%). In contrast, Azure’s cost distribution shifts

significantly, with compute at 30% and IT labor at 59%, while data center and networking costs

are effectively eliminated due to Azure’s managed services. Total costs are shown in Figure

23.

Figure 23. Cost Distribution of On-Premises and Azure Infrastructure Over 5 Years.

77

A detailed breakdown highlights that the on-premises setup incurs higher expenses due to the

need for physical infrastructure and significant IT labor costs are reported in Figure 24 Azure's

cost efficiency stems from economies of scale and the reduction of direct management

responsibilities through managed services.

Figure 24. Detailed Cost Breakdown for On-Premises and Azure Over 5 Years

This analysis looks at the direct migration of five virtual machines (VMs) from an on-premises

environment to Azure, where each VM, including its compute, storage, and networking

resources, is replicated in the cloud to mirror the original setup.

However, using Azure's managed Kubernetes service (AKS) would significantly reduce costs.

In AKS, the control plane is fully managed by Azure at no extra charge, so the main expenses

come from the compute and storage needs of the worker nodes. This is different from the direct

VM migration approach, where all VMs, including those for the control plane, need to be fully

provisioned and billed.

Leveraging AKS not only reduces management overhead but also takes advantage of Azure’s

resource optimization for Kubernetes workloads. This approach is especially beneficial for

long-term operational costs and scalability, where AKS offers greater efficiency compared to

traditional VM-based deployments.

Azure AKS Pricing Breakdown

To further illustrate the cost-effectiveness of Azure, an additional pricing analysis was

performed using the Azure Pricing Calculator for an AKS setup [37]. The AKS setup detailed

below is the exact configuration used throughout this thesis to conduct performance testing,

https://azure.microsoft.com/en-gb/pricing/calculator/

78

cost analysis, and other comparative evaluations between Azure-based Kubernetes services and

on-premises deployments.

The AKS cluster was configured with the following parameters:

• Region: West Europe

• Cluster Management: Standard cluster management for 1 cluster, which is fully

managed by Azure.

• Nodes:

o Operating System: Linux

o Instance Series: Standard A2 v2 (2 vCPUs, 4GB RAM)

o VMs: 2 nodes, each priced at $0.086/hour for a total of 730 hours/month.

o OS Disks: Standard SSD (64GB) per node, priced at $4.80/month per disk.

The estimated monthly cost for this AKS setup is $208.31, which translates to $12,498.60 over

five years, as shown in Figure 25.

Figure 25. Estimated Monthly Cost for Azure AKS Setup.

In comparison, the cost of running the same five VMs directly in Azure for five years is 29%

higher, totaling $16,123 as per the TCO report generated for the same workloads, as shown in

Figure 26.

79

Figure 26. 5-Year Cost Comparison: AKS Setup vs. 5 VMs in Azure

Cost savings strategies in Azure:

Azure provides several options for reducing costs, making it an even more cost-effective

platform for running Kubernetes workloads.

• Pay-As-You-Go: The standard pay-as-you-go pricing for 2 VMs in an AKS cluster is

$125.71 per month. This pricing model offers flexibility with no upfront commitment,

making it suitable for workloads with unpredictable usage patterns.

• Savings Plans: For example, a three-year savings plan for 2 VMs in an AKS cluster

can reduce the monthly cost to $67.88, representing a 46% discount. The estimated

monthly cost of this package, including cluster management and Managed OS Disks,

is $149.92. Over a five-year period, this results in a total cost of $8,995.20.

• Reservations: For example, a three-year reservation for 2 VMs in an AKS cluster can

reduce the monthly cost to $47.77, representing a 62% discount. The estimated monthly

cost of this package, including cluster management and Managed OS Disks, is $130.37.

Over five years, this translates to a total cost of $7,822.20.

80

Cost Savings Strategies for K3S

When deploying infrastructure on-premises, several strategies can be employed to optimize

costs and ensure efficient use of resources. These strategies are crucial for managing expenses

while maintaining the necessary performance and reliability.

• Virtualization with Proxmox: Implementing virtualization platforms like Proxmox

[38] can enhance resource utilization and reduce hardware costs. Proxmox is an open-

source platform that allows you to create and manage virtual machines efficiently,

providing high availability, disaster recovery, and backup functionalities without the

licensing fees associated with commercial hypervisors. This enables better

consolidation of workloads onto fewer physical machines, thereby lowering power,

cooling, and maintenance costs.

• Energy-efficient hardware: Investing in energy-efficient servers and networking

equipment can lead to substantial savings on power and cooling costs. Modern

hardware often comes with features that optimize energy consumption, such as dynamic

power scaling and efficient cooling systems. By selecting hardware with a favourable

power-to-performance ratio, one can achieve significant long-term operational savings.

• Open-source management tools: Utilizing open-source tools for system management,

monitoring, and automation is another effective cost-saving strategy. Solutions like

Ansible for configuration management, Prometheus for monitoring, and Grafana for

visualization provide robust functionality without the licensing costs associated with

commercial alternatives. These tools help maintain visibility and control over your

infrastructure while keeping software costs to a minimum.

5.3.3. Insights on On-Premises vs Cloud-Based Solutions

A critical insight from this thesis is the potential benefits of using K3S in on-premises

environments, particularly when an organization already has a significant investment in

physical infrastructure. While the cost analysis in this study was based on a setup with only

five VMs, it is important to recognize that as the scale of on-premises infrastructure increases,

the relative cost-effectiveness of K3S improves significantly. If an organization has high server

utilization, running K3S on-premises could lead to substantial savings compared to cloud-

based solutions like AKS. This is because the incremental cost of adding more VMs or utilizing

more of the existing infrastructure is generally lower than the equivalent cost in a cloud

environment, where pricing is based on usage.

81

For organizations with extensive on-premises resources, K3S does not only provide superior

performance but also offers a way to maximize the value of existing hardware investments.

This could make K3S a more economically viable option for large-scale or high-utilization

scenarios, where the fixed costs of maintaining an on-premises data center are spread across a

larger number of workloads.

82

6. Qualitative Analysis

This chapter presents a qualitative analysis of Azure Kubernetes Service (AKS) and K3S,

focusing on their implementation, configuration, deployment ease, management, security

features and tools for monitoring. Additionally, the chapter will explore community support

and the quality of documentation available for each platform. Each section will critically

examine the differences between these platforms, offering insights into their suitability for

different environments and use cases.

6.1. Implementation and Configuration Differences

The implementation and configuration of AKS and K3S reflect their distinct design

philosophies and target environments.

Initial Setup

The setup process for AKS is designed to be user-friendly and streamlined, especially given its

managed nature within the Azure ecosystem. One of the significant advantages of AKS is the

ability to deploy it through Azure GUI, which makes the process even simpler and more

intuitive for users. This graphical interface reduces the need for deep technical knowledge,

allowing for rapid deployment with minimal manual intervention. Additionally, the use of

Terraform scripts, which have been written and used in this master's thesis, automates much of

the configuration, including resource provisioning, networking setup, and cluster identity

management. This automation further simplifies the initial setup, making AKS a compelling

choice for enterprises looking to deploy a robust Kubernetes cluster quickly and efficiently.

In contrast, setting up K3S requires a more hands-on and technically involved approach. The

process includes manually configuring virtual machines, setting up networking, and deploying

the K3S binaries using tools like Ansible, with playbooks also developed and used in this thesis.

Unlike AKS, where deployment can be done via a GUI, K3S setup is typically performed

through the Linux terminal, adding a layer of complexity. While this approach offers greater

flexibility, particularly in resource-constrained environments such as edge computing, it

necessitates a deeper understanding of Kubernetes and the underlying infrastructure. K3S’s

lightweight nature allows it to be deployed in environments where AKS might be too resource-

intensive, but this comes with the requirement for more technical expertise and manual

configuration.

83

Customization

AKS offers a range of built-in features that are pre-configured, such as integrated identity

management, network policies enforced through Calico, and seamless integration with Azure

services like Azure Active Directory and Azure Monitor. These pre-configured services

enhance security, simplify management, and provide a consistent operational experience.

However, they can also limit the extent of customization available to users. For instance,

modifying default network configurations, integrating non-Azure services, or deploying

specialized software may require additional configuration steps or might be constrained by

Azure's proprietary ecosystem. Additionally, while AKS provides a streamlined experience, it

also ties users to the Azure platform, making cross-cloud or hybrid configurations more

challenging without significant workarounds.

In contrast, K3S is designed with flexibility at its core, offering a high degree of customization.

The absence of pre-configured services allows users to tailor the environment according to

their specific requirements. For example, users can select from various Container Network

Interface (CNI) plugins, such as Flannel or Calico, depending on their networking needs.

Moreover, K3S’s lightweight architecture supports the deployment of custom monitoring

solutions and the integration of third-party services without the restrictions imposed by a

managed service like AKS. This flexibility is particularly advantageous in scenarios where

bespoke configurations are necessary, such as specialized workloads, non-standard

environments, or when integrating with a mix of on-premises and cloud-based systems.

However, this customization comes with the trade-off of requiring more effort, expertise, and

hands-on management.

6.2. Ease of Deployment and Integrations

The ease of deploying applications and integrating with other tools and services is generally

similar between AKS and K3S, particularly in the context of deploying the 'Online Boutique'

application.

Deployment Process

Deploying the "Online Boutique" application on both AKS and K3S follows a similar process,

utilizing YAML manifests to configure and launch the microservices. These tools provide a

consistent deployment experience across both platforms, enabling users to define and manage

their applications declaratively.

84

In addition to YAML manifests for deploying the application, Helm is used in both

environments to deploy essential system services, such as the kube-prometheus-stack, which

includes Prometheus for monitoring and Grafana for visualization. This consistent approach

across AKS and K3S ensures that the monitoring and management infrastructure is deployed

in a standardized manner.

However, there are distinctions in how each platform handles networking and service exposure.

In AKS, the Azure Load Balancer is used as the service load balancer, providing a fully

managed, scalable solution for exposing applications to external traffic. This integration with

Azure’s cloud infrastructure simplifies the process of making services available over the

internet, with built-in support for features like automatic scaling and SSL termination.

In contrast, K3S uses a more lightweight approach with its built-in Klipper load balancer.

Klipper allows K3S to expose applications on port 80, making it possible to serve applications

directly without requiring an external load balancer. This feature is particularly advantageous

in resource-constrained environments or edge computing scenarios, where a full-fledged cloud-

based load balancer might be unnecessary or impractical. Despite its simplicity, Klipper

effectively handles the essential task of load balancing within a K3S cluster, providing a

streamlined solution for service exposure.

Integrations

AKS is inherently designed for deployment in cloud environments, specifically within the

Azure ecosystem. Its managed nature, along with deep integration with Azure services, makes

it an excellent choice for organizations that are fully invested in Azure. AKS’s seamless

integration with other Azure tools like Azure DevOps, Azure Security Center, and Azure Policy

further strengthens its position as the go-to solution for cloud-native applications within this

ecosystem. However, AKS’s close ties to Azure mean that it is less adaptable for on-premises

or hybrid cloud environments unless these environments are heavily reliant on Azure’s

infrastructure. While Azure Arc enables some hybrid cloud capabilities, deploying AKS

outside of Azure requires significant additional configuration and may not offer the same level

of support or performance.

On the other hand, K3S stands out for its versatility across various environments. It is equally

at home in cloud, on-premises, or hybrid deployments, making it a strong contender for

organizations that need flexibility in where and how their Kubernetes clusters are deployed.

K3S’s lightweight footprint and reduced system requirements make it particularly well-suited

85

for edge computing, IoT applications, and environments with limited resources. Furthermore,

K3S can be integrated with various cloud services, including those from multiple providers,

making it an ideal choice for multi-cloud or hybrid strategies. Although this requires more

manual setup compared to AKS’s integrated approach, it provides organizations with the

freedom to optimize their infrastructure across different platforms, choosing the best tools and

services from each environment to meet their specific needs.

Learning Curve

The learning curve for AKS is generally lower, particularly for users already familiar with

Azure services. The managed nature of the platform, along with its extensive documentation

and community support, makes it easier to get started with Kubernetes deployments.

K3S, while also supported by good documentation and a growing community, presents a

steeper learning curve. The need for manual setup and configuration, combined with the

flexibility it offers, means that users must have a deeper understanding of Kubernetes and the

infrastructure it runs on.

6.3. Management, Monitoring and Security Features

The management and security features of AKS and K3S reflect their design priorities and

intended use cases.

Management

Azure Kubernetes Service (AKS) leverages Azure's extensive ecosystem to provide robust

management capabilities. Through Azure's native tools like Azure Monitor, Azure Policy, and

Log Analytics, AKS offers a highly integrated management experience. These tools are

designed to work seamlessly with AKS, allowing users to automate monitoring, scaling, and

compliance tasks with ease. For organizations already embedded in the Azure ecosystem, this

integration simplifies the management of Kubernetes clusters, enabling centralized control and

streamlined operations.

K3S, while equally capable of integrating with tools like Rancher, Grafana, and Prometheus,

often requires a more hands-on approach to cluster management. Users need to set up and

configure these tools manually, giving them the flexibility to tailor their management stack to

the specific needs of their environment. This manual setup can be more time-consuming but

offers greater customization.

86

Despite the availability of Rancher and Grafana on both platforms, AKS benefits from the

managed nature of the Azure platform, where much of the heavy lifting such as cluster

upgrades, scaling, and patching is handled automatically by Azure. In contrast, K3S places

more responsibility on the user, requiring more direct management and configuration efforts to

maintain the cluster.

Monitoring

Monitoring in AKS leverages the capabilities of the kube-prometheus-stack, which includes

Prometheus and Grafana, to provide robust monitoring across the cluster. This setup is

consistent across both AKS and K3S, allowing for comprehensive metric collection and real-

time visualization through customizable Grafana dashboards. In AKS, the integration with

Azure's native tools, such as Azure Monitor and Log Analytics, further enhances the

monitoring experience by offering advanced analytics and pre-configured alerts directly

through the Azure portal.

One of the key strengths of AKS lies in its alerting capabilities. Azure Monitor's built-in

alerting features enable the creation of complex, rule-based alerts that can notify DevOps teams

of potential issues before they escalate. These alerts can be configured to trigger on various

conditions, such as high CPU usage, memory thresholds, or application errors, ensuring that

potential problems are addressed promptly.

In K3S, monitoring is also handled through the kube-prometheus-stack, providing the same

foundational tools as in AKS Prometheus for data collection and Grafana for visualization.

Although the setup in K3S requires more manual configuration, it offers flexibility in

customizing the monitoring stack to fit specific needs, such as integrating additional exporters

or customizing alert rules.

Grafana's alerting capabilities are fully available in K3S as well, allowing for the creation and

management of alerts based on the metrics collected by Prometheus. This means that you can

set up alerting in K3S just as effectively as in AKS, using Grafana's interface to define alert

conditions and receive notifications. However, since K3S does not have the same level of

integrated cloud services as AKS, the configuration and management of these alerts are more

manual, but this also allows for greater customization.

Security Features

Security in AKS is deeply integrated with Azure’s security framework, providing a

comprehensive, managed security posture. This includes built-in support for Azure Active

87

Directory (AAD) for authentication, automated security updates, and native network policies

enforced through Calico. Azure Security Center further enhances security by offering advanced

threat protection and continuous security assessments, ensuring that AKS clusters adhere to

best practices and regulatory requirements with minimal user intervention.

One of the key advantages of AKS is its ease of updates. Azure handles Kubernetes version

upgrades and patches automatically, minimizing the risk of human error and ensuring that

clusters remain secure and up to date with the latest features and security fixes. This approach

to updates is a significant benefit for organizations that prioritize operational efficiency and

security.

In contrast, K3S requires users to manually manage updates, which can add complexity and

operational overhead, particularly in environments with multiple nodes. Each node must be

individually updated to the new version of Kubernetes, which can be time-consuming and

requires careful planning to avoid downtime or inconsistencies across the cluster. While this

manual approach allows for greater control over the timing and process of updates, it also

increases the complexity of maintaining a secure and up-to-date environment.

Operational Overhead

The operational complexity associated with AKS is generally lower, thanks to its managed

nature within the Azure ecosystem. Azure handles critical operational tasks such as cluster

scaling, security patching and network management.

One of the standout features of AKS is its node pool scaling capability. AKS allows users to

easily scale node pools up or down based on demand, with just a few clicks or through

automated scaling rules. This ability to quickly adjust the size of the node pool without manual

intervention is a significant advantage in dynamic environments where workload demands

fluctuate. The automated management of node pools not only saves time but also ensures that

resources are used efficiently, without the need for manual provisioning and configuration.

K3S, in contrast, does not offer built-in node pool scaling. When additional capacity is needed

in a K3S cluster, users must manually create new virtual machines, configure them with the

necessary software, and join them to the cluster. This process, while offering granular control

over the infrastructure, is considerably more labor-intensive and time-consuming compared to

the automated scaling available in AKS. This increases the operational overhead in K3S

environments, particularly in scenarios where scaling is required frequently or rapidly.

88

6.4. Documentation and Community Support

The quality of documentation and community support plays a significant role in the usability

and adoption of any platform, particularly in open-source technologies like Kubernetes. This

section compares Azure Kubernetes Service (AKS) and K3S in terms of the support provided

by their respective communities and the quality of available documentation.

Documentation

AKS benefits from comprehensive and professionally maintained documentation provided by

Microsoft. The documentation is extensive, covering everything from initial setup to advanced

configurations, integrations with other Azure services, and best practices for security and

scalability. Microsoft's documentation is regularly updated in line with Azure's continuous

delivery of new features and updates, ensuring that users have access to the latest information.

Additionally, the integration of AKS with Azure’s managed services means that the

documentation also covers related services like Azure Monitor, Azure Active Directory, and

Azure Policy, providing a holistic guide to managing Kubernetes within the Azure ecosystem.

K3S documentation, while not as extensive as AKS’s, is well-suited to its target audience of

developers and operators working in specialized or resource-constrained environments. The

official K3S documentation is concise and focused on getting users up and running quickly,

reflecting the lightweight and simplified nature of K3S itself. However, for more complex

scenarios or detailed explanations, users may need to rely on broader Kubernetes

documentation or community-contributed guides and tutorials. This can make it more

challenging for less experienced users to find the specific information they need, particularly

for advanced configurations or troubleshooting.

Community Support

AKS benefits from being part of the broader Azure ecosystem, which includes a large and

active community of cloud professionals, developers, and DevOps engineers. Microsoft

actively supports this community through forums like Microsoft Q&A, GitHub discussions,

and Azure-specific community events. The size and engagement of this community ensure that

users can quickly find solutions to common problems, share best practices, and stay updated

on the latest features and updates. Additionally, Microsoft’s official support channels,

including Azure support plans, provide a reliable fallback for critical issues that require direct

assistance.

89

K3S, has a growing and vibrant community, particularly among those working in edge

computing, IoT, and resource-constrained environments. The community, primarily centred

around the open-source ecosystem, is very active on platforms like GitHub, Rancher forums,

and Kubernetes-specific Slack channels. While the community may not be as large as that of

AKS, its members are typically very knowledgeable about Kubernetes and open-source

technologies, which can lead to high-quality support and collaboration. However, K3S users

may have to rely more on community support than formal channels, especially since K3S is

often deployed in non-standard environments where specific issues may not have as much

coverage in broader Kubernetes discussions.

90

7. Discussion

This chapter presents a thorough analysis of the findings from the comparative study of Azure

Kubernetes Service (AKS) and K3S. It is structured to assess the strengths and weaknesses of

each platform across key criteria, offer recommendations for selecting the most suitable

orchestration tool, and explore the implications for future work. To accommodate different

reader preferences, the results are intentionally presented in various formats. Whether readers

are looking for a high-level summary or a detailed analysis, this structure provides flexibility

in how the information is accessed. Readers are encouraged to focus on the sections most

relevant to their interests and can skip any subsections that offer alternative presentations of

the same data.

7.1. Summary of Findings

This thesis has conducted an in-depth evaluation of AKS and K3S, focusing on key factors

such as cost, performance, resource utilization, scalability, management complexity, and

security. The findings highlight significant differences between these platforms, which are

crucial for organizations when selecting a Kubernetes orchestration tool.

Key Findings:

1. Resource Utilization:

a. AKS: Exhibits higher CPU and system load, largely due to additional

operational and management containers required for cloud operations.

However, it benefits from Azure’s resource optimization and scalability

features.

b. K3S: Demonstrates lower CPU and system load, making it more efficient in

resource-constrained environments, such as edge computing or on-premises

deployments.

2. Performance analysis:

a. AKS: While AKS provides adequate performance under various load

conditions, it falls behind K3S in raw performance metrics. The additional

overhead of managed services and cloud-specific components contributes to

this gap.

91

b. K3S: K3S consistently outperforms AKS in all benchmark tests, including

Apache AB, K6, and Sysbench, demonstrating superior CPU efficiency, lower

latency, and higher throughput.

3. Scalability and flexibility:

a. AKS: Offers superior scalability with built-in autoscaling and seamless

integration with Azure services. This makes it the better option for applications

requiring rapid scaling and dynamic resource management.

b. K3S: While highly flexible and customizable, K3S requires manual intervention

for scaling, which can increase operational complexity but offers greater control

over the environment.

4. Cost Analysis:

a. AKS: The total cost of deploying and running an application on AKS over a

five-year period is significantly lower, at $12,498.60, compared to $28,135 for

K3S. This cost advantage is primarily due to Azure's managed services, which

reduce operational overhead and optimize resource allocation.

b. K3S: The higher cost associated with K3S is due to the need for on-premises

infrastructure, manual management, and higher resource utilization. Despite

this, K3S offers superior performance, which may justify the higher expenditure

in performance-critical scenarios.

5. Ease of deployment and integration:

a. AKS: Simplifies deployment through Azure’s GUI and Terraform scripts,

making it accessible even to teams with limited Kubernetes expertise. It also

integrates seamlessly with Azure’s cloud services.

b. K3S: Requires a more manual setup process, which can be complex but offers

greater flexibility in customization. This makes it ideal for environments where

specific configurations are necessary, such as on-premises or edge deployments.

6. Security and management complexity:

a. AKS: Integrated with Azure’s security framework, including Azure Active

Directory and Azure Security Center, AKS provides a managed, comprehensive

security posture. It also benefits from lower management complexity due to

automated updates and scaling.

b. K3S: Requires more hands-on management for security configurations,

increasing the operational overhead. However, its open-source nature allows for

greater customization and integration with third-party security tools.

92

7.2. Comparative strengths and Weaknesses of Each Tool

This section evaluates the strengths and weaknesses of AKS and K3S based on the

comprehensive data gathered during this study.

Azure Kubernetes Service (AKS)

Strengths:

• Cost-effective in cloud environments: AKS provides significant cost savings through

its integration with Azure’s managed services, particularly when leveraging Azure’s

pricing models like Reserved Instances and Spot VMs. This makes AKS an attractive

option for organizations looking to optimize their cloud spending while maintaining

robust Kubernetes operations.

• Ease of management: One of the standout features of AKS is its ease of management,

particularly through automated processes such as scaling, security patching, and

updates. This reduces the need for extensive in-house Kubernetes expertise and allows

organizations to focus more on application development and less on infrastructure

management.

• Scalability: AKS’s built-in autoscaling capabilities are invaluable for applications that

experience varying workloads, providing seamless scalability that adjusts dynamically

to meet demand without requiring manual intervention.

• Security: AKS benefits from deep integration with Azure’s security tools, including

Azure Active Directory, Azure Security Center, and built-in compliance checks. This

comprehensive security framework ensures that AKS deployments are secure by

default, reducing the risk of vulnerabilities and improving overall compliance.

Weaknesses:

• Performance overhead: AKS introduces additional overhead due to its managed

services, which can result in lower performance compared to K3S in certain scenarios.

For applications where maximum throughput and minimal latency are critical, this can

be a disadvantage.

• Complexity in cross-cloud and hybrid deployments: AKS can be challenging to

integrate into multi-cloud or hybrid cloud environments where resources span across

93

different cloud providers. This limitation could complicate deployments for

organizations pursuing a multi-cloud strategy.

K3S

Strengths:

• Superior performance: K3S consistently outperforms AKS in all benchmark tests,

making it a better choice for performance-critical applications. Its lightweight

architecture and efficient resource utilization enable it to handle higher workloads with

lower latency.

• Resource efficiency: K3S’s low resource consumption makes it ideal for environments

with limited capacity. Its ability to operate efficiently on less powerful hardware is a

significant advantage in resource-constrained settings.

• Flexibility and customization: K3S offers a high degree of flexibility, allowing users

to tailor the environment to their specific needs. This is particularly beneficial in

specialized environments such as edge computing, IoT, or on-premises deployments.

Weaknesses:

• Higher cost in on-premises deployments: The cost of running K3S in an on-premises

environment is significantly higher than AKS, primarily due to the need for physical

infrastructure, manual management, and higher resource utilization.

• Complex management: K3S requires more hands-on management, including manual

updates and scaling. This increases the operational complexity and may necessitate a

higher level of expertise from the IT staff.

• Limited built-in security: Unlike AKS, which benefits from Azure’s managed security

features, K3S requires manual configuration of security protocols. This adds to the

management overhead and increases the risk of misconfigurations.

94

Table 20. Detailed Comparative Analysis of Azure Kubernetes Service (AKS) and K3S Based on Criteria

Criteria AKS K3S Winner

Resource Utilization

(Idle State)

Higher CPU and System

Load (42.3% CPU,

99.5% Load)

Lower CPU and System

Load (12.5% CPU, 17.5%

Load)

K3S

Performance (Apache

AB Test)

34 requests/s, 29.413

ms/request

109.44 requests/s, 9.137

ms/request

K3S

Performance (K6

Test)

22.24 requests/sec, 13.22

s/request

109.92 requests/sec, 1.57

s/request

K3S

Performance

(Sysbench CPU

Speed)

8050.65 events/s 20219.14 events/s K3S

Cost (5-Year Total) $12,498.60 $28,135.00 AKS

Implementation and

Configuration

Easy with GUI and

Terraform scripts,

integrated with Azure

Hands-on, manual setup

with more flexibility

AKS (Ease);

K3S (Flexibility)

Ease of Deployment

and Integrations

Seamless Azure

integration, GUI-based

deployment

Flexible, supports diverse

environments, manual

setup

AKS (Ease);

K3S (Versatility)

Management

Complexity

Lower - automated

updates and scaling

Higher - manual updates

and scaling

AKS

Scalability High - built-in

autoscaling

Medium - requires manual

intervention

AKS

Flexibility and

Customization

High - Azure-centric

with extensive options

High - open-source and

flexible

Tie

Security Integrated with Azure

Security, automated

patches

Manual security

configurations, higher

overhead

AKS

Documentation and

Community Support

Extensive, backed by

Microsoft, large

community

Growing, focused

community, strong in edge

computing

AKS

95

Overall Winner AKS (6/13 criteria) K3S (4/13 criteria) AKS Wins

While AKS stands out as the overall winner, the choice between AKS and K3S ultimately

depends on the specific use case and the expertise of the DevOps team. AKS offers greater ease

of deployment, integrated management, and strong Azure service integration, making it

suitable for teams working within the Azure ecosystem. On the other hand, K3S excels in

performance, resource efficiency, and flexibility, particularly in smaller, resource-constrained

environments or edge computing scenarios. The right platform should be selected based on the

project's needs and operational expertise, as outlined in the detailed comparative analysis

shown in Table 20.

7.3. Recommendations for Selecting an Orchestration Platform

When deciding between AKS and K3S, organizations should carefully consider their specific

needs, strategic goals, existing infrastructure and team expertise. Below are recommendations

tailored to different scenarios:

When to choose AKS:

• Cloud-native applications: For organizations deeply integrated with Azure, AKS is

the logical choice due to its seamless integration with Azure services, which simplifies

deployment and management. This is particularly advantageous for teams already

utilizing other Azure services, as it creates a cohesive ecosystem with centralized

management and support.

• Ease of management: AKS is ideal for organizations looking to reduce operational

overhead. The platform’s managed services automate many routine tasks, such as

scaling and security patching, freeing up IT resources to focus on more strategic

initiatives.

• Cost efficiency: AKS is more cost-effective for cloud deployments, especially when

considering Azure’s flexible pricing models, such as Reserved Instances and Spot VMs.

For organizations looking to minimize long-term costs while benefiting from robust

infrastructure, AKS presents a compelling option.

96

• Scalability needs: If an organization’s workload is expected to fluctuate significantly,

AKS’s autoscaling capabilities ensure that resources are allocated dynamically and

efficiently, avoiding both underutilization and overprovisioning.

When to choose K3S:

• Performance-critical applications: K3S excels in environments where performance

is paramount. Its superior benchmarks in throughput and latency make it a better choice

for applications requiring high performance, such as real-time data processing, IoT, and

edge computing.

• Customization and flexibility: K3S is ideal for organizations that need a high degree

of customization in their Kubernetes environment. Whether for specialized workloads

or unique operational requirements, K3S’s open-source flexibility allows for tailored

configurations that might not be possible with a more managed solution like AKS.

• On-premises and edge deployments: For deployments outside the cloud, particularly

in on-premises data centers or at the edge, K3S’s lightweight architecture and efficient

resource usage make it a strong candidate. It is well-suited for environments where

cloud resources are not feasible or where local processing power is critical.

• Existing infrastructure: If an organization already has significant on-premises

infrastructure, the higher initial and operational costs of K3S might be offset by its

performance benefits and the ability to integrate with existing systems. K3S’s

performance gains can justify the investment in these scenarios, particularly when high

throughput and low latency are required.

7.4. Gartner Magic Quadrant for Container Management

As part of this analysis, it's important to consider the broader industry context in which AKS

operates. Microsoft’s Azure Kubernetes Service has been recognized as a Leader in the 2023

Gartner Magic Quadrant for Container Management, as shown in Figure 27 [39].

97

Figure 27. Magic Quadrant for Container Management. Source: [39].

The Gartner Magic Quadrant for Container Management is a significant industry benchmark

that evaluates vendors based on their ability to execute and the completeness of their vision.

Microsoft’s position as a Leader, alongside other industry giants like Google, Amazon Web

Services and Red Hat underscores its strong market presence and the robust capabilities of

AKS.

In contrast, K3S, while highly capable, is positioned differently in the market as a product

developed by Rancher Labs (part of the SUSE ecosystem) which Gartner places in the

"Challengers" quadrant. This positioning reflects SUSE’s solid ability to execute but a less

complete vision compared to leaders like Microsoft. However, for specific use cases such as

on-premises or edge computing, K3S remains a powerful and flexible tool, even if it does not

have the same broad market penetration or recognition as AKS.

In addition to Azure Kubernetes Service (AKS) and K3S, it is important to consider other

popular container orchestration tools that excel in different deployment environments. Among

98

these, Amazon Web Services (AWS) and OpenShift are two key players in the Kubernetes

space. AWS EKS is widely adopted for its extensive cloud-native capabilities, while OpenShift

is recognized for its hybrid and on-premises solutions. By comparing these tools with AKS and

K3S, we can better understand how each platform fits into various cloud and on-premises

deployment scenarios.

Amazon Web Services (AWS)

AWS, through its Elastic Kubernetes Service (EKS), is also a Leader in the container

management space. Like AKS, AWS EKS offers seamless cloud integration and managed

services, making it an ideal choice for enterprises fully committed to cloud-based

infrastructure. In comparison to AKS, AWS EKS provides similar capabilities but stands out

for its vast ecosystem and flexibility in deploying services across AWS's extensive global

infrastructure.

OpenShift (Red Hat Kubernetes Platform)

OpenShift, recognized as a Leader for its hybrid and multi-cloud Kubernetes capabilities, offers

a powerful on-premises solution. Compared to AKS, which is tightly integrated into the Azure

ecosystem, OpenShift offers broader flexibility in managing Kubernetes clusters across

multiple environments. For enterprises looking for a robust, on-premises solution with strong

developer tools, OpenShift stands out. Compared to K3S, OpenShift is more enterprise-

focused, offering additional features like integrated CI/CD pipelines and developer workflows,

but it comes with a higher resource and operational overhead, making it more suitable for larger

deployments.

99

8. Conclusion

This thesis conducted an extensive comparison between Azure Kubernetes Service (AKS) and

K3S to determine their suitability for orchestrating a medium complexity microservices

application, exemplified by the "Online Boutique" application. The aim was to provide a

thorough understanding of how each platform performs in both cloud and on-premises

environments, particularly in terms of performance, cost, management complexity, and

scalability.

The study's quantitative analysis demonstrated distinct differences between the two platforms.

AKS, deeply integrated with the Azure ecosystem, showed significant cost advantages over a

five-year period when compared to K3S, particularly in a scenario involving only five virtual

machines (VMs). This cost-efficiency stems from Azure's managed services, which reduce the

operational overhead and optimize resource allocation. The total cost of ownership for AKS

was markedly lower at $12,498.60, compared to $28,135 for K3S.

However, K3S outperformed AKS in all key performance benchmarks, including CPU speed,

memory transfer rate, and request-handling capabilities. K3S's lightweight architecture allowed

it to deliver superior throughput and lower latency, making it the better choice for performance-

critical applications. The analysis also showed that K3S has a lower CPU and system load in

idle states, which is advantageous for resource-constrained environments. This performance

difference is also influenced by the hardware and virtualization factors, such as K3S’s larger

L2 cache, optimized CPU architecture, and lower hypervisor overhead compared to AKS.

The qualitative comparison further illuminated the strengths and weaknesses of each platform.

AKS was noted for its ease of management, particularly in cloud environments, where its

automated updates, built-in security features, and seamless integration with Azure services

simplified operations. This makes AKS an attractive option for organizations looking to

minimize their operational overhead and focus on application development.

On the other hand, K3S excelled in flexibility and customization. Its open-source nature allows

for a high degree of tailoring, making it ideal for on-premises deployments or edge computing

scenarios where specific configurations are necessary. K3S's ability to run efficiently on less

powerful hardware also makes it suitable for environments with limited resources.

100

8.1. Comprehensive Comparison and Final Recommendations

The findings of this thesis suggest that the choice between AKS and K3S should be guided by

an organization’s specific needs and existing infrastructure:

• For cloud-native applications or organizations heavily invested in the Azure

ecosystem, AKS is the preferred choice. It offers significant cost savings, ease of

management, and seamless integration with other Azure services. Its built-in

scalability and security features make it a robust option for enterprises looking to

leverage the full potential of cloud infrastructure without the need for extensive in-

house Kubernetes expertise.

• For performance-critical applications or organizations with significant on-

premises infrastructure, K3S is the superior choice. Its lightweight architecture

and efficient resource utilization allow it to deliver better performance, especially

in scenarios requiring high throughput and low latency. Moreover, for organizations

with high server utilization, K3S could be more cost-effective, as it maximizes the

use of existing physical infrastructure.

In conclusion, this thesis has provided a detailed comparison of AKS and K3S, offering

valuable insights into their strengths and weaknesses. The decision between these two

platforms should be made based on a thorough understanding of an organization’s current

infrastructure, strategic goals, and specific application requirements. Whether optimizing for

cost, performance, or operational simplicity, this analysis serves as a comprehensive guide to

selecting the optimal Kubernetes orchestration tool for diverse deployment environments.

Additionally, this thesis makes several significant contributions:

• Documented Deployment Process and Code: A fully documented process and code

for deploying a microservices-based application using both AKS and K3S, available

via GitHub repository and accompanied by step-by-step instructions.

• Benchmark Tests and Results Interpretation: Detailed benchmark tests were

conducted, including Apache AB, K6, and Sysbench, with comprehensive analysis and

interpretation of the results.

• Qualitative Comparison: An in-depth comparison of key orchestration tool properties,

such as resource utilization, performance, cost, and scalability.

101

• Cost Analysis Methodology: A clear methodology for conducting cost analysis,

comparing the total cost of ownership (TCO) between AKS and K3S, highlighting cost-

saving strategies for both cloud-based and on-premise solutions.

• Recommendations for Selection: Clear recommendations for choosing between AKS

and K3S based on specific application needs, infrastructure, and goals.

8.2. Implications for Future Work

The comparative analysis of AKS and K3S reveals several areas where further research and

development could provide additional value to organizations, particularly as the landscape of

Kubernetes and cloud computing continues to evolve.

Exploration of cost optimization:

Additional studies should focus on further optimizing costs within AKS, such as exploring the

use of Azure’s Spot VMs, Reserved Instances, or hybrid benefit programs. Understanding how

to maximize cost savings while maintaining performance could help organizations make more

informed decisions about their cloud strategies.

For K3S, cost optimization efforts could examine how organizations can leverage synergies

with their existing infrastructure, including the use of existing on-premise hardware, energy-

efficient configurations, and virtualization solutions like Proxmox. Exploring opportunities to

reduce operational overhead by automating management tasks and optimizing resource

allocation in K3S clusters would further enhance the cost-effectiveness of on-premise

deployments.

Long-term performance studies:

Conducting longitudinal studies that evaluate the performance of AKS and K3S over extended

periods and under varied workloads would provide valuable insights into their long-term

viability. Such research would be particularly beneficial for understanding how each platform

handles scaling, resource allocation, and overall cost-efficiency in real-world scenarios.

Hybrid and multi-cloud strategies:

Future research should explore how AKS and K3S can be integrated within hybrid or multi-

cloud architectures. Leveraging AKS for cloud-native workloads while deploying K3S in on-

premises or edge environments could offer a balanced approach, combining the strengths of

102

both platforms. Such strategies would allow organizations to maintain flexibility, optimize

costs, and ensure that applications are deployed in the most suitable environment.

Security and compliance enhancements:

As security remains a top priority for organizations, future work should focus on enhancing the

security features of K3S, possibly through automation or integration with enterprise-grade

security tools. This would make K3S more attractive to organizations with stringent security

and compliance requirements, particularly in regulated industries.

103

References

[1] Linux Foundation, "Cloud Native Computing Foundation," 2024. [Online]. Available:

https://www.cncf.io/.

[2] S. Newman, Monolith to Microservices, O'Reilly Media, Inc., 2019.

[3] B. Burns, J. Beda and K. Hightower, Kubernetes: Up and Running: Dive into the Future

of Infrastructure, O'Reilly Media, 2019.

[4] Kubernetes Authors, "Kubernetes Components," 2024. [Online]. Available:

https://kubernetes.io/docs/concepts/overview/components/.

[5] Microsoft Corporation, Inc., "Azure Kubernetes Services (AKS) core concepts - Azure

Kubernetes Service," 1 August 2024. [Online]. Available:

https://learn.microsoft.com/en-us/azure/aks/core-aks-concepts.

[6] K3s Project Authors, "K3s," 2024. [Online]. Available: https://k3s.io/.

[7] S. Newman, Building Microservices: Designing Fine-Grained Systems, O'Reilly Media,

2015.

[8] S. Newman and M. Dorian, Monolith to Microservices: Evolutionary Patterns to

Transform Your Monolith, Ascent Audio, 2021.

[9] H. v. Merode, Continuous Integration (CI) and Continuous Delivery (CD): A Practical

Guide to Designing and Developing Pipelines, Apress, 2023.

[10] M. Krief, Learning DevOps, Packt Publishing, 2019.

[11] F. Harris, Cloud Native Architecture: Efficiently moving legacy applications and

monoliths to microservices and Kubernetes, bpb, 2024.

[12] "Managed Kubernetes Service (AKS) | Microsoft Azure," Microsoft, 2024. [Online].

Available: https://azure.microsoft.com/en-us/products/kubernetes-service.

[13] Google LLC, “Online Boutique: Microservices demo.,” 2020-2024. [Online]. Available:

https://github.com/GoogleCloudPlatform/microservices-demo/tree/main.

104

[14] HashiCorp, "Terraform by HashiCorp," 2024. [Online]. Available:

https://www.terraform.io/.

[15] Broadcom Inc., "VMware vSphere documentation," 2024. [Online]. Available:

https://docs.vmware.com/en/VMware-vSphere/index.html.

[16] Red Hat, "Homepage | Ansible Collaborative," 2024. [Online]. Available:

https://www.ansible.com/.

[17] Kubernetes Contributors, "Installation Guide - Ingress-Nginx Controller," 2024.

[Online]. Available: https://kubernetes.github.io/ingress-nginx/deploy/.

[18] Prometheus Authors, "Prometheus - Monitoring system & time series database," 2024.

[Online]. Available: https://prometheus.io/.

[19] Grafana Labs, "Grafana: The open observability platform | Grafana Labs," 2024.

[Online]. Available: https://grafana.com/.

[20] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases through

Build, Test, and Deployment Automation (Addison-Wesley Signature Series (Fowler)),

Addison-Wesley Professional, 2010.

[21] The Apache Software Foundation, "ab - Apache HTTP server benchmarking tool -

Apache HTTP Server Version 2.4," 2024. [Online]. Available:

https://httpd.apache.org/docs/current/programs/ab.html.

[22] Grafana Labs, "Load testing for engineering teams | Grafana k6," 2024. [Online].

Available: https://k6.io/.

[23] Kubenet Team, "kubenet," 2024. [Online]. Available: https://learn.kubenet.dev/.

[24] Tigera, Inc., "Calico Documentation," 2024. [Online]. Available: https://docs.tigera.io/.

[25] A. Janach, "ajanach/comparison-of-orchestration-systems-for-microservices-

applications," 2024. [Online]. Available: https://github.com/ajanach/comparison-of-

orchestration-systems-for-microservices-applications.

[26] A. Keesari, "Create Azure Kubernetes Service (AKS) using terraform | by Anji Keesari |

Medium," 4 September 2023. [Online]. Available:

105

https://medium.com/@anjkeesari/create-azure-kubernetes-service-aks-using-terraform-

4a847464501c.

[27] D. Odazie, "Kubernetes Secrets – How to Create, Use, and Manage," 25 October 2022.

[Online]. Available: https://spacelift.io/blog/kubernetes-secrets.

[28] A. learning, "Key Vault Integration with AKS — Azure | by Always learning | Medium,"

23 May 2024. [Online]. Available: https://ibrahims.medium.com/key-vault-azure-

a2b5729fdfe8.

[29] Kubernetes Authors, Horizontal Pod Autoscaling, 2024.

[30] Microsoft, "Azure Monitor features for Kubernetes monitoring," 2024. [Online].

Available: https://learn.microsoft.com/en-us/azure/azure-monitor/containers/container-

insights-overview.

[31] S. Cuff, "14. On AKS Automatic, Azure Advisor Cost Optimization workbook, and

Navigating your career in IT.," 2024. [Online]. Available:

https://www.linkedin.com/pulse/14-aks-automatic-azure-advisor-cost-optimization-

workbook-sonia-cuff-etdqc/.

[32] K3s Project Authors, "Architecture | K3s," 2024. [Online]. Available:

https://docs.k3s.io/architecture.

[33] CoreOS, "flannel-io/flannel: flannel is a network fabric for containers, designed for

Kubernetes," 2024. [Online]. Available: https://github.com/flannel-io/flannel.

[34] S. James and V. Lancey, Networking and Kubernetes: A Layered Approach, O'Reilly

Media, 2021.

[35] Microsoft Corporation, Inc., "Total Cost of Ownership (TCO) Calculator | Microsoft

Azure," 2024. [Online]. Available: https://azure.microsoft.com/en-

us/pricing/tco/calculator/.

[36] O. Brightrose, "What is Azure TCO Calculator," 2020. [Online]. Available:

https://www.cloudysave.com/azure/what-is-azure-tco-calculator/.

[37] Microsoft Corporation, Inc., "Pricing Calculator | Microsoft Azure," 2024. [Online].

Available: https://azure.microsoft.com/en-us/pricing/calculator/.

106

[38] Proxmox Server Solutions GmbH, "Proxmox - Powerful open-source server solutions,"

2024. [Online]. Available: https://www.proxmox.com/en/.

[39] Gartner, Inc, "Gartner Magic Quadrant for Container Management," 20 September 2023.

[Online]. Available: https://www.gartner.com/en/documents/4763231.

[40] S. Bostandoust, "ssbostan/kubernetes-complete-reference: Kubernetes reference,

awesome, cheatsheet, concepts, tools, examples," 2024. [Online]. Available:

https://github.com/ssbostan/kubernetes-complete-reference/tree/master.

107

List of Tables

Table 1. Summary of Benefits and Challenges in Microservices Architecture. Source [2]. ... 10

Table 2. Summary of Key Features and Functions in Orchestration Tools. Source [3]. 11

Table 3. Use Cases for Kubernetes .. 12

Table 4. Overview of Key Orchestration Tools for Microservices ... 13

Table 5. Deployment Methods for Kubernetes .. 18

Table 6. Specifications for Each Worker Node in Azure Kubernetes Service 27

Table 7. Specifications for Each Control Plane Node in On-Premises K3S Environment...... 27

Table 8. Specifications for Each Worker Node in On-Premises K3S Environment 28

Table 9. Configuration of virtual machines for the K3S Kubernetes cluster in vSphere 40

Table 10. Detailed Comparison of Pod and Container Distribution Between Azure Kubernetes

Service (AKS) and K3S ... 48

Table 11. AKS Cluster Resource Utilization (Idle State with “Online Boutique” Deployed) 49

Table 12. K3S Cluster Resource Utilization (Idle State with “Online Boutique” Deployed) . 49

Table 13. Storage and Network Performance (Idle State with “Online Boutique” Deployed) 50

Table 14. Apache AB Benchmark Results for AKS and K3S ... 54

Table 15. K6 Benchmark Results for AKS and K3S ... 61

Table 16. System Benchmark Results Comparison for AKS and K3S 66

Table 17. AKS worker node sysbench output summary .. 68

Table 18. K3S worker node sysbench summary .. 68

Table 19. Highlights of lscpu output.. 69

Table 20. Detailed Comparative Analysis of Azure Kubernetes Service (AKS) and K3S Based

on Criteria .. 94

108

List of Figures

Figure 1. The Components of a Kubernetes Cluster. Source: [4]. ... 16

Figure 2. Kubernetes Cluster Architecture. Source: [4]. ... 17

Figure 3. The "microservices-demo" interconnection of microservices. Source: [13]. 23

Figure 4. Create Azure Kubernetes Service (AKS) using Terraform. Source: [26]. 35

Figure 5. Retrieving the external IP address and accessing the “Online Boutique” application

through a browser on Azure Kubernetes Service (AKS) ... 36

Figure 6. Accessing the Grafana dashboard through port forwarding on Azure Kubernetes

Service (AKS) .. 37

Figure 7. vCenter Web UI Displaying the Creation of Five Virtual Machines for the K3S

Kubernetes Cluster ... 41

Figure 8. K3s Infrastructure for Online Boutique Deployment .. 43

Figure 9. Recommended High-Availability K3s Setup. Source: [32]. 44

Figure 10. Retrieving the external IP address and accessing the “Online Boutique” application

through a browser on K3s .. 45

Figure 11. Grafana AKS Cluster Resource Utilization .. 51

Figure 12. Grafana K3S Cluster Resource Utilization... 52

Figure 13. Apache AB Benchmark Results for AKS and K3S.. 54

Figure 14. Comparison of Average Requests per Second Between AKS and K3S 55

Figure 15. System Load on AKS Worker Nodes During Apache AB Testing........................ 56

Figure 16. System Load on K3S Worker Nodes During Apache AB Testing 57

Figure 17. K6 Benchmark Results for AKS and K3S ... 62

Figure 18. Diagram of K6 Benchmark Results for AKS and K3S .. 63

Figure 19. System Load on AKS Worker Nodes During K6 Testing 64

Figure 20. System Load on K3S Worker Nodes During K6 Testing 65

Figure 21. System Benchmark Results for AKS and K3S... 67

Figure 22. Total Cost of Ownership Over 5 Years: On-Premises vs. Azure. 76

109

Figure 23. Cost Distribution of On-Premises and Azure Infrastructure Over 5 Years. 76

Figure 24. Detailed Cost Breakdown for On-Premises and Azure Over 5 Years 77

Figure 25. Estimated Monthly Cost for Azure AKS Setup. .. 78

Figure 26. 5-Year Cost Comparison: AKS Setup vs. 5 VMs in Azure 79

Figure 27. Magic Quadrant for Container Management. Source: [39]. 97

110

List of Codes

Code 1. Terraform configuration script for deploying an Azure Kubernetes Service (AKS)

cluster ... 32

Code 2. K6 test script for simulating virtual user load on AKS and K3S 60

111

Appendix

The source code, configuration files, and automation scripts used in this thesis are available in

the following GitHub repository: https://github.com/ajanach/comparison-of-orchestration-

systems-for-microservices-applications

https://github.com/ajanach/comparison-of-orchestration-systems-for-microservices-applications
https://github.com/ajanach/comparison-of-orchestration-systems-for-microservices-applications

